Nitrogen-vacancy (NV) centers in diamond have emerged as a robust room-temperature solid-state platform for weak magnetic field detection. Several NV-based magnetometers have been proposed in the past decades, but they still suffer from either low sensitivity or high power consumption. This is a challenge for sensors deployed in remote locations on Earth or in space that are not connected to the power grid. Although sunlight-driven quantum magnetometry, which does not rely on conventional energy sources, has been proposed as a possible solution, its sensitivity remains a limitation. Here, we present an impressive improvement in the sensitivity of the sunlight-driven NV-diamond quantum magnetometer. A crucial aspect of our approach involves leveraging the ground-state level anti-crossing properties of the NV centers, coupled with magnetic flux concentrators. This integration enables us to achieve a magnetic-field sensitivity of 26 pT/ Hz in a laboratory environment and 49 pT/ Hz when the magnetometer operates outdoors under sunlight. We also illustrate the promising potential of further improving the sensitivity to the subpicotesla level by using cutting-edge technologies. Furthermore, we reveal the capability of this quantum magnetometer as a receiver of extremely low-frequency magnetic signals and pave the way for communication applications. These advancements represent a significant leap toward attaining high-sensitivity and energy-efficient magnetic field sensing and expanding the range of possible applications for these environmentally sustainable quantum technologies.

1.
D.
Le Sage
,
K.
Arai
,
D. R.
Glenn
et al, “
Optical magnetic imaging of living cells
,”
Nature
496
,
486
489
(
2013
).
2.
E.
Boto
,
N.
Holmes
,
J.
Leggett
et al, “
Moving magnetoencephalography towards real-world applications with a wearable system
,”
Nature
555
,
657
661
(
2018
).
3.
N.
Aslam
,
H.
Zhou
,
E. K.
Urbach
et al, “
Quantum sensors for biomedical applications
,”
Nat. Rev. Phys.
5
,
157
169
(
2023
).
4.
M.
Mandea
and
M.
Korte
,
Geomagnetic Observations and Models
(
Springer Science + Business Media B.V
,
2011
), Vol.
5
.
5.
P. B.
Kotzé
,
P. J.
Cilliers
, and
P. R.
Sutcliffe
, “
The role of SANSA's geomagnetic observation network in space weather monitoring: A review
,”
Space Weather
13
,
656
664
, https://doi.org/10.1002/2015SW001279 (
2015
).
6.
B.
Cheng
,
B.
Zhou
,
W.
Magnes
et al, “
High precision magnetometer for geomagnetic exploration onboard of the China Seismo-Electromagnetic Satellite
,”
Sci. China Technol. Sci.
61
,
659
668
(
2018
).
7.
G.
Chatzidrosos
,
A.
Wickenbrock
,
L.
Bougas
et al, “
Eddy-current imaging with nitrogen-vacancy centers in diamond
,”
Phys. Rev. Appl.
11
,
014060
(
2019
).
8.
X.
Zhang
,
G.
Chatzidrosos
,
Y.
Hu
et al, “
Battery characterization via eddy-current imaging with nitrogen-vacancy centers in diamond
,”
Appl. Sci.
11
,
3069
(
2021
).
9.
T.
Wolf
,
P.
Neumann
,
K.
Nakamura
et al, “
Subpicotesla diamond magnetometry
,”
Phys. Rev. X
5
,
041001
(
2015
).
10.
C.
Zhang
,
F.
Shagieva
,
M.
Widmann
et al, “
Diamond magnetometry and gradiometry towards subpicotesla dc field measurement
,”
Phys. Rev. Appl.
15
,
064075
(
2021
).
11.
J. F.
Barry
,
M. H.
Steinecker
,
S. T.
Alsid
et al, “
Sensitive ac and dc magnetometry with nitrogen-vacancy center ensembles in diamond
,” arXiv:2305.06269 (
2023
).
12.
J. M.
Taylor
,
P.
Cappellaro
,
L.
Childress
et al, “
High-sensitivity diamond magnetometer with nanoscale resolution
,”
Nat. Phys.
4
,
810
816
(
2008
).
13.
G.
Balasubramanian
,
I. Y.
Chan
,
R.
Kolesov
et al, “
Nanoscale imaging magnetometry with diamond spins under ambient conditions
,”
Nature
455
,
648
651
(
2008
).
14.
M. H.
Abobeih
,
J.
Randall
,
C. E.
Bradley
et al, “
Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor
,”
Nature
576
,
411
415
(
2019
).
15.
H.
Clevenson
,
L. M.
Pham
,
C.
Teale
et al, “
Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond
,”
Appl. Phys. Lett.
112
,
252406
(
2018
).
16.
J. M.
Schloss
,
J. F.
Barry
,
M. J.
Turner
et al, “
Simultaneous broadband vector magnetometry using solid-state spins
,”
Phys. Rev. Appl.
10
,
034044
(
2018
).
17.
T.
Ruster
,
H.
Kaufmann
,
M. A.
Luda
et al, “
Entanglement-based dc magnetometry with separated ions
,”
Phys. Rev. X
7
,
031050
(
2017
).
18.
J. F.
Barry
,
M. J.
Turner
,
J. M.
Schloss
et al, “
Optical magnetic detection of single-neuron action potentials using quantum defects in diamond
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
14133
14138
(
2016
).
19.
N.
Sekiguchi
,
M.
Fushimi
,
A.
Yoshimura
et al, “
Diamond quantum magnetometer with dc sensitivity of sub-10 pT Hz−1/2 toward measurement of biomagnetic field
,”
Phys. Rev. Appl.
21
,
064010
(
2024
).
20.
Y.
Xie
,
H.
Yu
,
Y.
Zhu
et al, “
A hybrid magnetometer towards femtotesla sensitivity under ambient conditions
,”
Sci. Bull.
66
,
127
132
(
2021
).
21.
A.
Wickenbrock
,
H.
Zheng
,
L.
Bougas
et al, “
Microwave-free magnetometry with nitrogen-vacancy centers in diamond
,”
Appl. Phys. Lett.
109
,
053505
(
2016
).
22.
H.
Zheng
,
Z.
Sun
,
G.
Chatzidrosos
et al, “
Microwave-free vector magnetometry with nitrogen-vacancy centers along a single axis in diamond
,”
Phys. Rev. Appl.
13
,
044023
(
2020
).
23.
D.
Paone
,
D.
Pinto
,
G.
Kim
et al, “
All-optical and microwave-free detection of Meissner screening using nitrogen-vacancy centers in diamond
,”
J. Appl. Phys.
129
,
024306
(
2021
).
24.
Y.
Zhu
,
Y.
Xie
,
K.
Jing
et al, “
Sunlight-driven quantum magnetometry
,”
PRX Energy
1
,
033002
(
2022
).
25.
M. W.
Doherty
,
N. B.
Manson
,
P.
Delaney
et al, “
The nitrogen-vacancy colour centre in diamond
,”
Phys. Rep.
528
,
1
45
(
2013
).
26.
J. F.
Barry
,
J. M.
Schloss
,
E.
Bauch
et al, “
Sensitivity optimization for NV-diamond magnetometry
,”
Rev. Mod. Phys.
92
,
015004
(
2020
).
27.
M. L.
Goldman
,
A.
Sipahigil
,
M. W.
Doherty
et al, “
Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers
,”
Phys. Rev. Lett.
114
,
145502
(
2015
).
28.
M. L.
Goldman
,
M. W.
Doherty
,
A.
Sipahigil
et al, “
State-selective intersystem crossing in nitrogen-vacancy centers
,”
Phys. Rev. B
91
,
165201
(
2015
).
29.
R. J.
Epstein
,
F. M.
Mendoza
,
Y. K.
Kato
et al, “
Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond
,”
Nat. Phys.
1
,
94
98
(
2005
).
30.
J.-P.
Tetienne
,
L.
Rondin
,
P.
Spinicelli
et al, “
Magnetic-field-dependent photodynamics of single NV defects in diamond: An application to qualitative all-optical magnetic imaging
,”
New J. Phys.
14
,
103033
(
2012
).
31.
I.
Fescenko
,
A.
Jarmola
,
I.
Savukov
et al, “
Diamond magnetometer enhanced by ferrite flux concentrators
,”
Phys. Rev. Res.
2
,
023394
(
2020
).
32.
L. T.
Hall
,
P.
Kehayias
,
D. A.
Simpson
et al, “
Detection of nanoscale electron spin resonance spectra demonstrated using nitrogen-vacancy centre probes in diamond
,”
Nat. Commun.
7
,
10211
(
2016
).
33.
R.
Lazda
,
L.
Busaite
,
A.
Berzins
et al, “
Cross-relaxation studies with optically detected magnetic resonances in nitrogen-vacancy centers in diamond in external magnetic field
,”
Phys. Rev. B
103
,
134104
(
2021
).
34.
M.
Auzinsh
,
A.
Berzins
,
D.
Budker
et al, “
Hyperfine level structure in nitrogen-vacancy centers near the ground-state level anticrossing
,”
Phys. Rev. B
100
,
075204
(
2019
).
35.
S. V.
Anishchik
and
K. L.
Ivanov
, “
A method for simulating level anti-crossing spectra of diamond crystals containing NV color centers
,”
J. Magn. Reson.
305
,
67
76
(
2019
).
36.
V.
Ivády
,
H.
Zheng
,
A.
Wickenbrock
et al, “
Photoluminescence at the ground-state level anticrossing of the nitrogen-vacancy center in diamond: A comprehensive study
,”
Phys. Rev. B
103
,
035307
(
2021
).
37.
X.
Zhuo
,
G.
Zhao
,
Q.
Di
et al, “
Preliminary application of WEM in geophysical exploration
,”
Prog. Geophys.
22
,
1921
1924
(
2007
).
38.
R.
Wang
,
R.
Wang
,
Q.
Di
et al, “
Signal test of wireless electromagnetic method (WEM)
,”
J. Eng. Geol.
27
,
668
675
(
2019
).
39.
Q.
Di
,
G.
Xue
,
C.
Yin
et al, “
New methods of controlled-source electromagnetic detection in China
,”
Sci. China Earth Sci.
63
,
1268
1277
(
2020
).
40.
A. C.
Fraser-Smith
, “
Ultralow-frequency magnetic fields preceding large earthquakes
,”
EoS. Trans.
89
,
211
(
2008
).
41.
A.
Schekotov
,
D.
Chebrov
,
M.
Hayakawa
et al, “
Short-term earthquake prediction in Kamchatka using low-frequency magnetic fields
,”
Nat. Hazards
100
,
735
755
(
2020
).
You do not currently have access to this content.