Acoustically driven ferromagnetic resonance (ADFMR) is a platform that enables efficient generation and detection of spin waves via magnetoelastic coupling with surface acoustic waves (SAWs). While previous studies successfully achieved ADFMR in ferromagnetic metals, there are only few reports on ADFMR in magnetic insulators such as yttrium iron garnet (Y3Fe5O12, YIG) despite more favorable spin wave properties, including low damping and long coherence length. The growth of high-quality YIG films for ADFMR devices is a major challenge due to poor lattice-matching and thermal degradation of the piezoelectric substrates during film crystallization. In this work, we demonstrate ADFMR of YIG thin films on LiNbO3 (LNO) substrates. We employed a SiOx buffer layer and rapid thermal annealing for crystallization of YIG films with minimal thermal degradation of LNO substrates. Optimized ADFMR device designs and time-gating measurements were used to enhance the ADFMR signal and overcome the intrinsically low magnetoelastic coupling of YIG. YIG films have a polycrystalline structure with an in-plane easy direction due to biaxial stresses induced during cooling after crystallization. The YIG device shows clear ADFMR patterns with maximum absorption for H ≈ 160 mT parallel to SAW propagation, which is consistent with our simulation results based on existing theoretical models. These results expand possibilities for developing efficient spin wave devices with magnetic insulators.

1.
P.
Pirro
,
V. I.
Vasyuchka
,
A. A.
Serga
, and
B.
Hillebrands
, “
Advances in coherent magnonics
,”
Nat. Rev. Mater.
6
,
1114
(
2021
).
2.
A.
Barman
,
G.
Gubbiotti
,
S.
Ladak
et al, “
The 2021 magnonics roadmap
,”
J. Phys.
33
,
413001
(
2021
).
3.
B.
Lenk
,
H.
Ulrichs
,
F.
Garbs
, and
M.
Münzenberg
, “
The building blocks of magnonics
,”
Phys. Rep.
507
,
107
(
2011
).
4.
A. V.
Chumak
,
V. I.
Vasyuchka
,
A. A.
Serga
, and
B.
Hillebrands
, “
Magnon spintronics
,”
Nat. Phys.
11
(
6
),
453
(
2015
).
5.
A. A.
Serga
,
A. V.
Chumak
, and
B.
Hillebrands
, “
YIG magnonics
,”
J. Phys. D
43
,
264002
(
2010
).
6.
L.
Dreher
,
M.
Weiler
,
M.
Pernpeintner
,
H.
Huebl
,
R.
Gross
,
M. S.
Brandt
, and
S. T. B.
Goennenwein
, “
Surface acoustic wave driven ferromagnetic resonance in nickel thin films: Theory and experiment
,”
Phys. Rev. B
86
,
134415
(
2012
).
7.
X.
Li
,
D.
Labanowski
,
S.
Salahuddin
, and
C. S.
Lynch
, “
Spin wave generation by surface acoustic waves
,”
J. Appl. Phys.
122
,
043904
(
2017
).
8.
P. G.
Gowtham
,
D.
Labanowski
, and
S.
Salahuddin
, “
Mechanical back-action of a spin-wave resonance in a magnetoelastic thin film on a surface acoustic wave
,”
Phys. Rev. B
94
,
014436
(
2016
).
9.
N. I.
Polzikova
,
S. G.
Alekseev
,
V. A.
Luzanov
, and
A. O.
Raevskiy
, “
Electroacoustic excitation of spin waves and their detection due to the inverse spin Hall effect
,”
Phys. Solid State
60
,
2211
(
2018
).
10.
M.
Weiler
,
L.
Dreher
,
C.
Heeg
,
H.
Huebl
,
R.
Gross
,
M. S.
Brandt
, and
S. T. B.
Goennenwein
, “
Elastically driven ferromagnetic resonance in nickel thin films
,”
Phys. Rev. Lett.
106
,
117601
(
2011
).
11.
D.
Labanowski
,
A.
Jung
, and
S.
Salahuddin
, “
Power absorption in acoustically driven ferromagnetic resonance
,”
Appl. Phys. Lett.
108
,
022905
(
2016
).
12.
D. A.
Bas
,
P. J.
Shah
,
M. E.
McConney
, and
M. R.
Page
, “
Optimization of acoustically-driven ferromagnetic resonance devices
,”
J. Appl. Phys.
126
,
114501
(
2019
).
13.
M. G.
Holland
and
L. T.
Claiborne
, “
Practical surface acoustic wave devices
,”
Proc. IEEE
62
,
582
(
1974
).
14.
W. C.
Wilson
and
G. M.
Atkinson
, “1st order modeling of a SAW delay line using MathCAD,”
IEEE SoutheastCon
20070016024
(
2007
).
15.
D. A.
Bas
,
P. J.
Shah
,
A.
Matyushov
,
M.
Popov
,
V.
Schell
,
R. C.
Budhani
,
G.
Srinivasan
,
E.
Quandt
,
N.
Sun
, and
M. R.
Page
, “
Acoustically driven ferromagnetic resonance in diverse ferromagnetic thin films
,”
IEEE Trans. Magn.
57
,
4300605
(
2021
).
16.
J.-Y.
Duquesne
,
P.
Rovillain
,
C.
Hepburn
,
M.
Eddrief
,
P.
Atkinson
,
A.
Anane
,
R.
Ranchal
, and
M.
Marangolo
, “
Surface-acoustic-wave induced ferromagnetic resonance in fe thin films and magnetic field sensing
,”
Phys. Rev. Appl.
12
,
024042
(
2019
).
17.
B.
Bhoi
,
N.
Venkataramani
,
S.
Prasad
,
R. P. R. C.
Aiyar
,
G.
Kumar
,
I.
Samajdar
, and
M.
Kostylev
, “
Observation of enhanced magnetic anisotropy in PLD YIG thin film on GGG (1 1 1) substrate
,”
J. Magn. Magn. Mater.
483
,
191
(
2019
).
18.
B.
Bhoi
,
B.
Kim
,
Y.
Kim
,
M.-K.
Kim
,
J.-H.
Lee
, and
S.-K.
Kim
, “
Stress-induced magnetic properties of PLD-grown high-quality ultrathin YIG films
,”
J. Appl. Phys.
123
,
203902
(
2018
).
19.
K. L.
Sweeney
and
L. E.
Halliburton
, “
Oxygen vacancies in lithium niobate
,”
Appl. Phys. Lett.
43
,
336
(
1983
).
20.
M.
Sumets
,
A.
Kostyuchenko
,
V.
Ievlev
,
S.
Kannykin
, and
V.
Dybov
, “
Influence of thermal annealing on structural properties and oxide charge of LiNbO3 films
,”
J. Mater. Sci.
26
,
7853
(
2015
).
21.
L. A.
Kappers
,
K. L.
Sweeney
,
L. E.
Halliburton
, and
J. H. W.
Liaw
, “
Oxygen vacancies in lithium tantalate
,”
Phys. Rev. B
31
,
6792
(
1985
).
22.
S.
Leontsev
,
P. J.
Shah
,
H. S.
Kum
et al, “
Functional properties of yttrium iron garnett thin films on graphene-coated Gd3Ga5O12 for remote epitaxial transfer
,”
J. Magn. Magn. Mater.
556
,
169440
(
2022
).
23.
P. C.
Dorsey
,
S. E.
Bushnell
,
R. G.
Seed
, and
C.
Vittoria
, “
Epitaxial yttrium iron garnet films grown by pulsed laser deposition
,”
J. Appl. Phys.
74
,
1242
(
1993
).
24.
J.
Atulasimha
and
A. B.
Flatau
, “
A review of magnetostrictive iron–gallium alloys
,”
Smart Mater. Struct.
20
,
043001
(
2011
).
25.
A. B.
Smith
and
R. V.
Jones
, “
Magnetostriction constants from ferromagnetic resonance
,”
J. Appl. Phys.
34
,
1283
(
1963
).
26.
M. J.
Gross
,
W. A.
Misba
,
K.
Hayashi
,
D.
Bhattacharya
,
D. B.
Gopman
,
J.
Atulasimha
, and
C. A.
Ross
, “
Voltage modulated magnetic anisotropy of rare earth iron garnet thin films on a piezoelectric substrate
,”
Appl. Phys. Lett.
121
,
252401
(
2022
).
27.
R.
Kumar
,
Z.
Hossain
, and
R. C.
Budhani
, “
Effects of post-deposition annealing on the structure and magnetization of PLD grown yttrium iron garnet films
,”
J. Appl. Phys.
121
,
113901
(
2017
).
28.
A. I.
Serokurova
,
S. A.
Sharko
,
E. N.
Galenko
,
V. A.
Ketsko
, and
M. N.
Smirnova
, “
Submicron iron-garnet films on lithium-niobate substrates obtained by ion-beam deposition
,”
J. Surf. Invest.
15
,
806
(
2021
).
29.
U.
Holzwarth
and
N.
Gibson
, “
The Scherrer equation versus the ‘Debye-Scherrer equation’
,”
Nat. Nanotechnol.
6
,
9
(
2011
).
30.
S. A.
Manuilov
,
R.
Fors
,
S. I.
Khartsev
, and
A. M.
Grishin
, “
Submicron Y3Fe5O12 film magnetostatic wave band pass filters
,”
J. Appl. Phys.
105
,
033917
(
2009
).
31.
A. I.
Stognij
,
N. N.
Novitskii
,
S. A.
Sharko
,
A. I.
Serokurova
,
M. N.
Smirnova
, and
V. A.
Ketsko
, “
Growth and properties of Y3Fe5O12 films on LiNbO3 substrates
,”
Inorg. Mater.
56
,
847
(
2020
).
32.
S.
Tan
,
Y.
Liu
,
J.
Chen
,
L.
Yang
,
J.
Lan
, and
B.
Dai
, “
Study on lattice constant and magnetic properties of bismuth substituted YIG polycrystal thin film on different substrates prepared by rf magnetron sputtering
,”
J. Mater. Sci.
30
,
7410
(
2019
).
33.
B. B.
Krichevtsov
,
S. V.
Gastev
,
S. M.
Suturin
,
V. V.
Fedorov
,
A. M.
Korovin
,
V. E.
Bursian
,
A. G.
Banshchikov
,
M. P.
Volkov
,
M.
Tabuchi
, and
N. S.
Sokolov
, “
Magnetization reversal in YIG/GGG(111) nanoheterostructures grown by laser molecular beam epitaxy
,”
Sci. Technol. Adv. Mater.
18
,
351
(
2017
).
34.
T.
Fakhrul
,
S.
Tazlaru
,
L.
Beran
,
Y.
Zhang
,
M.
Veis
, and
C. A.
Ross
, “
Magneto-optical Bi:YIG films with high figure of merit for nonreciprocal photonics
,”
Adv. Opt. Mater.
7
,
1900056
(
2019
).
35.
S. C.
Abrahams
,
H. J.
Levinstein
, and
J. M.
Reddy
, “
Ferroelectric lithium niobate. 5. Polycrystal x-ray diffraction study between 24° and 1200 °C
,”
J. Phys. Chem. Solids
27
,
1019
(
1966
).
36.
IET
,
Properties of Lithium Niobate
(
IET
,
2002
).
37.
S.
Geller
,
G. P.
Espinosa
, and
P. B.
Crandall
, “
Thermal expansion of yttrium and gadolinium iron, gallium and aluminum garnets
,”
J. Appl. Cryst.
2
,
86
(
1969
).
38.
A. I.
Stognij
,
L. V.
Lutsev
,
V. E.
Bursian
, and
N. N.
Novitskii
, “
Growth and spin-wave properties of thin Y3Fe5O12 films on Si substrates
,”
J. Appl. Phys.
118
,
023905
(
2015
).
39.
R. T.
Smith
and
F. S.
Welsh
, “
Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate
,”
J. Appl. Phys.
42
,
2219
(
1971
).
40.
P. G.
Gowtham
,
T.
Moriyama
,
D. C.
Ralph
, and
R. A.
Buhrman
, “
Traveling surface spin-wave resonance spectroscopy using surface acoustic waves
,”
J. Appl. Phys.
118
,
233910
(
2015
).
41.
E.
Klokholm
, “
The measurement of magnetostriction in ferromagnetic thin films
,”
IEEE Trans. Magn.
12
,
819
(
1976
).
42.
M.
Küß
,
M.
Heigl
,
L.
Flacke
,
A.
Hörner
,
M.
Weiler
,
M.
Albrecht
, and
A.
Wixforth
, “
Nonreciprocal Dzyaloshinskii–Moriya magnetoacoustic waves
,”
Phys. Rev. Lett.
125
,
217203
(
2020
).
43.
P. J.
Shah
,
D. A.
Bas
,
A.
Hamadeh
,
M.
Wolf
,
A.
Franson
,
M.
Newburger
,
P.
Pirro
,
M.
Weiler
, and
M. R.
Page
, “
Symmetry and nonlinearity of spin wave resonance excited by focused surface acoustic waves
,”
Adv. Electron. Mater.
9
,
2300524
(
2023
).
44.
B. D.
Cullity
and
C. D.
Graham
,
Introduction to Magnetic Materials
, 2nd ed. (
Wiley-IEEE Press
, 2008).
45.
G.
Wedler
,
J.
Walz
,
A.
Greuer
, and
R.
Koch
, “
Stress dependence of the magnetoelastic coupling constants B1 and B2 of epitaxial Fe(001)
,”
Phys. Rev. B
60
,
R11313
(
1999
).
46.
X. Y.
Sun
,
Q.
Du
,
T.
Goto
,
M. C.
Onbasli
,
D. H.
Kim
,
N. M.
Aimon
,
J.
Hu
, and
C. A.
Ross
, “
Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation
,”
ACS Photonics
2
,
856
(
2015
).
47.
Certain commercial equipment, instruments, or materials are identified in this document. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose.
You do not currently have access to this content.