Kagome materials serve as crucial platforms for investigating the quantum anomalous Hall effect (QAHE) due to the presence of kagome bands in their electronic structures. However, despite the theoretical predictions being proposed, kagome band material realizations have been limited. In this work, through tight-binding (TB) model analysis, by setting the nearest-neighbor hopping integrals with opposite signs, we propose a Yin–Yang kagome band structure characterized by two stable enantiomorphic kagome bands. Furthermore, we design a monolayer V3Cl6 to confirm the TB model. Three V atoms are located in different coordination environments in V3Cl6, so opposite signs of the hopping integrals between two of their orthogonal d orbitals can be achieved, which is the key to realize Yin–Yang kagome band structures. The calculated band structures obtained from first principles are consistent with those from the TB model. Additionally, we find that the two enantiomorphic flat bands in monolayer V3Cl6 possess opposite Chern number after spin–orbit coupling is considered, which can also be confirmed from symmetry index analysis. The Chern numbers as well as the topological properties can be modulated by doping hole or adjusting the magnetization directions, so the QAHE can be tuned in monolayer V3Cl6. Our results provide a practicable pathway for realizing Yin–Yang kagome band structures and achieving tunable QAHE in them.

1.
S. C.
Holbaek
,
M. H.
Christensen
,
A.
Kreisel
, and
B. M.
Andersen
, “
Unconventional superconductivity protected from disorder on the kagome lattice
,”
Phys. Rev. B
108
,
144508
(
2023
).
2.
D.
Golovanova
,
H. X.
Tan
,
T.
Holder
, and
B. H.
Yan
, “
Tuning the intrinsic spin Hall effect by charge density wave order in topological kagome metals
,”
Phys. Rev. B
108
,
205203
(
2023
).
3.
R. Y.
Sun
,
H. K.
Jin
,
H. H.
Tu
, and
Y.
Zhou
, “
Possible chiral spin liquid state in the S = 1/2 kagome Heisenberg model
,”
npj Quantum Mater.
9
,
16
(
2024
).
4.
Y.
Nakata
,
T.
Okada
,
T.
Nakanishi
, and
M.
Kitano
, “
Observation of flat band for terahertz spoof plasmons in a metallic kagome lattice
,”
Phys. Rev. B
85
,
205128
(
2012
).
5.
R.
Liu
,
W. C.
Chen
,
Y. F.
Wang
, and
C. D.
Gong
, “
Topological quantum phase transitions and topological flat bands on the Kagome lattice
,”
J. Phys.: Condens. Matter
24
,
305602
(
2012
).
6.
C.
Barreteau
,
F.
Ducastelle
, and
T.
Mallah
, “
A bird's eye view on the flat and conic band world of the honeycomb and Kagome lattices: Towards an understanding of 2D metal-organic frameworks electronic structure
,”
J. Phys.: Condens. Matter
29
,
465302
(
2017
).
7.
N. J.
Ghimire
and
I. I.
Mazin
, “
Topology and correlations on the kagome lattice
,”
Nat. Mater.
19
,
137
138
(
2020
).
8.
S. I.
Huang
,
Y.
Xie
,
C. Y.
Zhong
, and
Y. P.
Chen
, “
Double kagome bands in a two-dimensional phosphorus carbide P2C3
,”
J. Phys. Chem. Lett.
9
,
2751
2756
(
2018
).
9.
D.
Green
,
L.
Santos
, and
C.
Chamon
, “
Isolated flat bands and spin-1 conical bands in two-dimensional lattices
,”
Phys. Rev. B
82
,
075104
(
2010
).
10.
X. Y.
Li
,
D. L.
Wang
,
H.
Hu
, and
Y.
Pan
, “
Designer artificial chiral kagome lattice with tunable flat bands and topological boundary states
,”
Nanotechnology
35
,
145601
(
2024
).
11.
Y. C.
Li
,
P. C.
Chen
,
G.
Zhou
,
J.
Li
,
J.
Wu
,
B.-L.
Gu
,
S. B.
Zhang
, and
W. H.
Duan
, “
Dirac fermion in strongly-bound graphene systems
,”
Phys. Rev. Lett.
109
,
206802
(
2012
).
12.
M.
Kang
,
L.
Ye
,
S.
Fang
,
J.
You
,
A.
Levitan
,
M.
Han
,
J. I.
Facio
,
C.
Jozwiak
,
A.
Bostwick
,
E.
Rotenberg
,
M. K.
Chan
,
R. D.
McDonald
,
D.
Graf
,
K.
Kaznatcheev
,
E.
Vescovo
,
D. C.
Bell
,
E.
Kaxiras
,
J. V. D.
Brink
,
M.
Richter
,
M. P.
Ghimire
,
J. G.
Checkelsky
, and
R.
Comin
, “
Dirac fermions and flat bands in the ideal kagome metal FeSn
,”
Nat. Mater.
19
,
163
169
(
2020
).
13.
M.
Imada
and
M.
Kohno
, “
Superconductivity from flat dispersion designed in doped Mott insulators
,”
Phys. Rev. Lett.
84
,
143
(
2000
).
14.
Y. X.
Jiang
,
J. X.
Yin
,
M. M.
Denner
,
N.
Shumiya
,
B. R.
Ortiz
,
G.
Xu
,
Z.
Guguchia
,
J. Y.
He
,
M. S.
Hossain
,
X. X.
Liu
,
J.
Ruff
,
L.
Kautzsch
,
S. S.
Zhang
,
G. Q.
Chang
,
I.
Belopolski
,
Q.
Zhang
,
T. A.
Cochran
,
D.
Multer
,
M.
Litskevich
,
Z.-J.
Cheng
,
X. P.
Yang
,
Z. Q.
Wang
,
R.
Thomale
,
T.
Neupert
,
S. D.
Wilson
, and
M. Z.
Hasan
, “
Unconventional chiral charge order in kagome superconductor KV3Sb5
,”
Nat. Mater.
20
,
1353
1357
(
2021
).
15.
C. J.
Wu
,
D.
Bergman
,
L.
Balents
, and
S. D.
Sarma
, “
Flat bands and Wigner crystallization in the honeycomb optical lattice
,”
Phys. Rev. Lett.
99
,
070401
(
2007
).
16.
J.
Wu
,
Y. E.
Xie
,
M. X.
Chen
,
J. R.
Yuan
,
X. H.
Yan
,
S. B.
Zhang
, and
Y. P.
Chen
, “
Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization
,”
Chin. Phys. B
30
,
077104
(
2021
).
17.
E.
Tang
,
J.-W.
Mei
, and
X.-G.
Wen
, “
High-temperature fractional quantum Hall states
,”
Phys. Rev. Lett.
106
,
236802
(
2011
).
18.
M.
Kang
,
S.
Fang
,
L.
Ye
,
H. C.
Po
,
J.
Denlinger
,
C.
Jozwiak
,
A.
Bostwick
,
E.
Rotenberg
,
E.
Kaxiras
,
J. G.
Checkelsky
, and
R.
Comin
, “
Topological flat bands in frustrated kagome lattice CoSn
,”
Nat. Commun.
11
,
4004
(
2020
).
19.
Q.
Wang
,
Y. F.
Xu
,
R.
Lou
,
Z. H.
Liu
,
M.
Li
,
Y. B.
Huang
,
D. W.
Shen
,
H. M.
Weng
,
S. C.
Wang
, and
H. C.
Lei
, “
Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions
,”
Nat. Commun.
9
,
3681
(
2018
).
20.
Z.
Zhang
,
J.-Y.
You
,
X.-Y.
Ma
,
B.
Gu
, and
G.
Su
, “
Kagome quantum anomalous Hall effect with high Chern number and large band gap
,”
Phys. Rev. B
103
,
014410
(
2021
).
21.
D. X.
Wu
,
H. F.
Lv
,
Z. W.
Zhuo
,
X. X.
Li
,
X. J.
Wu
, and
J. L.
Yang
, “
Orbital design of two-dimensional transition-metal peroxide kagome crystals with anionogenic Dirac half-metallicity
,”
J. Phys. Chem. Lett.
12
,
3528
3534
(
2021
).
22.
H. J.
Lian
,
X. K.
Xu
,
Y.
Han
,
J.
Li
,
W. Q.
Zhou
,
X. J.
Yao
,
J. L.
Lu
, and
X. Y.
Zhang
, “
Insight into the quantum anomalous Hall states in two-dimensional kagome Cr3Se4 and Fe3S4 monolayers
,”
Nanoscale
15
,
18745
(
2023
).
23.
F. D. M.
Haldane
, “
Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the ‘parity anomaly
,’”
Phys. Rev. Lett.
61
,
2015
(
1988
).
24.
C. Z.
Chang
,
C. X.
Liu
, and
A. H.
MacDonald
, “
Colloquium: Quantum anomalous Hall effect
,”
Rev. Mod. Phys.
95
,
011002
(
2023
).
25.
X. L.
Qi
,
T. L.
Hughes
, and
S. C.
Zhang
, “
Chiral topological superconductor from the quantum Hall state
,”
Phys. Rev. B
82
,
184516
(
2010
).
26.
J.
Zhu
,
J. J.
Su
, and
A. H.
MacDonald
, “
Voltage-controlled magnetic reversal in orbital Chern insulators
,”
Phys. Rev. Lett.
125
,
227702
(
2020
).
27.
C.-Z.
Chang
,
J. S.
Zhang
,
X.
Feng
,
J.
Shen
,
Z. C.
Zhang
,
M. H.
Guo
,
K.
Li
,
Y. B.
Ou
,
P.
Wei
,
L.-L.
Wang
,
Z.-Q.
Ji
,
Y.
Feng
,
S. H.
Ji
,
X.
Chen
,
J. F.
Jia
,
X.
Dai
,
Z.
Fang
,
S.-C.
Zhang
,
K.
He
,
Y. Y.
Wang
,
L.
Lu
,
X.-C.
Ma
, and
Q.-K.
Xue
, “
Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator
,”
Science
340
,
167
170
(
2013
).
28.
Y. J.
Deng
,
Y. J.
Yu
,
M. Z.
Shi
,
Z. X.
Guo
,
Z. H.
Xu
,
J.
Wang
,
X. H.
Chen
, and
Y. B.
Zhang
, “
Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4
,”
Science
367
,
895
900
(
2020
).
29.
L. Z.
Zhang
,
Z. F.
Wang
,
B.
Huang
,
B.
Cui
,
Z. M.
Wang
,
S. X.
Du
,
H. J.
Gao
, and
F.
Liu
, “
Intrinsic two-dimensional organic topological insulators in metal–dicyanoanthracene lattices
,”
Nano Lett.
16
,
2072
2075
(
2016
).
30.
X. J.
Ni
,
W.
Jiang
,
H. Q.
Huang
,
K. H.
Jin
, and
F.
Liu
, “
Intrinsic quantum anomalous Hall effect in a two-dimensional anilato-based lattice
,”
Nanoscale
10
,
11901
(
2018
).
31.
D. W.
Kim
and
F.
Liu
, “
Realization of flat bands by lattice intercalation in kagome metals
,”
Phys. Rev. B
107
,
205130
(
2023
).
32.
G.
Sethi
,
Y. O.
Zhou
,
L. H.
Zhu
,
L.
Yang
, and
F.
Liu
, “
Flat-band-enabled triplet excitonic insulator in a diatomic kagome lattice
,”
Phys. Rev. Lett.
126
,
196403
(
2021
).
33.
G.
Sethi
,
B. W.
Xia
,
D.
Kim
,
H.
Liu
,
X. Y.
Li
, and
F.
Liu
, “
Graph theorem for chiral exact flat bands at charge neutrality
,”
Phys. Rev. B
109
,
035140
(
2024
).
34.
Q.
Gao
,
X.
Sun
,
X. H.
Xu
,
X. X.
Jiang
,
Z. K.
Wang
,
L.
Yang
,
D. M.
Li
,
B.
Cui
, and
D. S.
Liu
, “
Enantiomorphic kagome bands in a two dimensional covalent organic framework with non-trivial magnetic and topological properties
,”
Phys. Chem. Chem. Phys.
26
,
2066
(
2024
).
35.
Y. O.
Zhou
,
G.
Sethi
,
C.
Zhang
,
X. J.
Ni
, and
F.
Liu
, “
Giant intrinsic circular dichroism of enantiomorphic flat Chern bands and flat band devices
,”
Phys. Rev. B
102
,
125115
(
2020
).
36.
Y. O.
Zhou
,
G.
Sethi
,
H.
Liu
,
Z. F.
Wang
, and
F.
Liu
, “
Excited quantum anomalous and spin Hall effect: Dissociation of flat-bands-enabled excitonic insulator state
,”
Nanotechnology
33
,
415001
(
2022
).
37.
X. J.
Ni
,
Y. O.
Zhou
,
G.
Sethi
, and
F.
Liu
, “
π-orbital Yin–Yang kagome bands in anilato-based metal–organic frameworks
,”
Phys. Chem. Chem. Phys.
22
,
25827
(
2020
).
38.
B.
Bradlyn
,
L.
Elcoro
,
J.
Cano
,
M. G.
Vergniory
,
Z. J.
Wang
,
C.
Felser
,
M. I.
Aroyo
, and
B. A.
Bernevig
, “
Topological quantum chemistry
,”
Nature
547
,
298
305
(
2017
).
39.
L.
Elcoro
,
B.
Bradlyn
,
Z.
Wang
,
M. G.
Vergniory
,
J.
Cano
,
C.
Felser
,
B.
Bernevig
,
D.
Orobengoa
,
G. D. L.
Flor
, and
M.
Aroyo
, “
Double crystallographic groups and their representations on the Bilbao Crystallographic Server
,”
J. Appl. Crystallogr.
50
,
1457
(
2017
).
40.
M. G.
Vergniory
,
L.
Elcoro
,
Z. J.
Wang
,
J.
Cano
,
C.
Felser
,
M. I.
Aroyo
,
B. A.
Bernevig
, and
B.
Bradlyn
, “
Publisher's Note: Graph theory data for topological quantum chemistry
,”
Phys. Rev. E
101
,
069902
(
2017
).
41.
X. X.
Li
,
X. J.
Wu
, and
J. L.
Yang
, “
Half-metallicity in MnPSe3 exfoliated nanosheet with carrier doping
,”
J. Am. Chem. Soc.
136
,
11065
11069
(
2014
).
You do not currently have access to this content.