Pure single crystal diamond is a superior material for electronic, quantum, and detection applications. The state-of-the-art level of background concentrations of boron and nitrogen in such diamonds is about 1 ppb, which is quite close to the detection limit of the best chemical analysis techniques. In this work, we show that the boron concentration of ∼0.1 ppb causes conductivity of ∼5 kΩ cm of the single crystal diamond if the nitrogen concentration is lower. In such a case, the temperature dependent Hall effect measurement provides ∼100 times better detection limit for the concentration of the impurities in diamond compared to the conventional optical techniques. As a result, we have found the background concentrations of boron and nitrogen at the level of 0.07 and 0.02 ppb, respectively. This fact leads to a conclusion that growth of the insulating diamond is possible only when the nitrogen concentration is higher than the boron concentration.

1.
Quantum Information Processing with Diamond: Principles and Applications
, edited by
S.
Prawer
and
I.
Aharonovich
(
Elsevier/WP, Woodhead Publishing
,
Amsterdam
,
2014
).
2.
V. S.
Bormashov
,
S. A.
Tarelkin
,
S. G.
Buga
,
M. S.
Kuznetsov
,
S. A.
Terentiev
,
A. N.
Semenov
, and
V. D.
Blank
, “
Electrical properties of the high quality boron-doped synthetic single-crystal diamonds grown by the temperature gradient method
,”
Diamond Relat. Mater.
35
,
19
23
(
2013
).
3.
I.
Zamboni
,
Ž.
Pastuović
, and
M.
Jakšić
, “
Radiation hardness of single crystal CVD diamond detector tested with MeV energy ions
,”
Diamond Relat. Mater.
31
,
65
71
(
2013
).
4.
A. V.
Krasilnikov
,
N. B.
Rodionov
,
A. P.
Bolshakov
,
V. G.
Ralchenko
,
S. K.
Vartapetov
,
Y. E.
Sizov
,
S. A.
Meschaninov
,
A. G.
Trapeznikov
,
V. P.
Rodionova
,
V. N.
Amosov
,
R. A.
Khmelnitsky
, and
A. N.
Kirichenko
, “
CVD-synthesis of detector quality diamond for radiation hardness detectors of ionizing radiation
,”
Tech. Phys.
92
(
4
),
503
(
2022
).
5.
S. D.
Trofimov
,
S. A.
Tarelkin
,
S. V.
Bolshedvorskii
,
V. S.
Bormashov
,
S.
Troshchiev
,
A. V.
Golovanov
,
N. V.
Luparev
,
D. D.
Prikhodko
,
K. N.
Boldyrev
,
S. A.
Terentiev
,
A. V.
Akimov
,
N. I.
Kargin
,
N. S.
Kukin
,
A. S.
Gusev
,
A. A.
Shemukhin
,
Y. V.
Balakshin
,
S. G.
Buga
, and
V. D.
Blank
, “
Spatially controlled fabrication of single NV centers in IIa HPHT diamond
,”
Opt. Mater. Express
10
(
1
),
198
(
2020
).
6.
S. D.
Tchernij
,
T.
Herzig
,
J.
Forneris
,
J.
Küpper
,
S.
Pezzagna
,
P.
Traina
,
E.
Moreva
,
I. P.
Degiovanni
,
G.
Brida
,
N.
Skukan
,
M.
Genovese
,
M.
Jakšić
,
J.
Meijer
, and
P.
Olivero
, “
Single-photon-emitting optical centers in diamond fabricated upon Sn implantation
,”
ACS Photonics
4
(
10
),
2580
2586
(
2017
).
7.
R.
Sandstrom
,
L.
Ke
,
A.
Martin
,
Z.
Wang
,
M.
Kianinia
,
B.
Green
,
W.
Gao
, and
I.
Aharonovich
, “
Optical properties of implanted Xe color centers in diamond
,”
Opt. Commun.
411
,
182
186
(
2018
).
8.
S. N.
Polyakov
,
V. N.
Denisov
,
N. V.
Kuzmin
,
M. S.
Kuznetsov
,
S.
Martyushov
,
S. A.
Nosukhin
,
S. A.
Terentiev
, and
V. D.
Blank
, “
Characterization of top-quality type IIa synthetic diamonds for new X-ray optics
,”
Diamond Relat. Mater.
20
(
5–6
),
726
728
(
2011
).
9.
S. N.
Polyakov
,
V. N.
Denisov
,
A. A.
Lomov
,
I. L.
Shulpina
,
S. Y.
Martyushov
,
N. V.
Kornilov
, and
V. D.
Blank
, “
Large‐sized X‐ray optics quality chemical vapor deposition diamond
,”
Phys. Status Solidi RRL
16
,
2200164
(
2022
).
10.
S. A.
Terentyev
,
V. D.
Blank
,
S.
Polyakov
,
S.
Zholudev
,
A. A.
Snigirev
,
M.
Polikarpov
,
T.
Kolodziej
,
J.
Qian
,
H.
Zhou
, and
Y. V.
Shvyd'ko
,
Proc. SPIE
9963
,
99630O
(
2016
).
11.
M.
Dutta
,
F. A. M.
Koeck
,
R.
Hathwar
,
S. M.
Goodnick
,
R. J.
Nemanich
, and
S.
Chowdhury
, “
Demonstration of diamond-based schottky p-i-n diode with blocking voltage > 500 V
,”
IEEE Electron Device Lett.
37
(
9
),
1170
1173
(
2016
).
12.
S.
Tarelkin
,
V.
Bormashov
,
S.
Buga
,
A.
Volkov
,
D.
Teteruk
,
N.
Kornilov
,
M.
Kuznetsov
,
S.
Terentiev
,
A.
Golovanov
, and
V.
Blank
, “
Power diamond vertical Schottky barrier diode with 10 A forward current
,”
Phys. Status Solidi A
212
(
11
),
2621
(
2015
).
13.
S.
Tarelkin
,
V.
Bormashov
,
E.
Korostylev
,
S.
Troschiev
,
D.
Teteruk
,
A.
Golovanov
,
A.
Volkov
,
N.
Kornilov
,
M.
Kuznetsov
,
D.
Prikhodko
, and
S.
Buga
, “
Comparative study of different metals for Schottky barrier diamond betavoltaic power converter by EBIC technique
,”
Phys. Status Solidi A
213
(
9
),
2492
2497
(
2016
).
14.
T.
Makino
,
S.
Tanimoto
,
Y.
Hayashi
,
H.
Kato
,
N.
Tokuda
,
M.
Ogura
,
D.
Takeuchi
,
K.
Oyama
,
H.
Ohashi
,
H.
Okushi
, and
S.
Yamasaki
, “
Diamond Schottky-pn diode with high forward current density and fast switching operation
,”
Appl. Phys. Lett.
94
(
26
),
262101
(
2009
).
15.
T.
Makino
,
H.
Kato
,
D.
Takeuchi
,
M.
Ogura
,
H.
Okushi
, and
S.
Yamasaki
, “
Device design of diamond Schottky-pn diode for low-loss power electronics
,”
Jpn. J. Appl. Phys., Part 1
51
(
9R
),
090116
(
2012
).
16.
T.
Makino
,
S.
Tanimoto
,
H.
Kato
,
N.
Tokuda
,
M.
Ogura
,
D.
Takeuchi
,
K.
Oyama
,
H.
Ohashi
,
H.
Okushi
, and
S.
Yamasaki
, “
Diamond Schottky p-n diode with high forward current density
,”
Phys. Status Solidi A
206
(
9
),
2086
2090
(
2009
).
17.
Y.
Iwakaji
,
M.
Kanasugi
,
O.
Maida
, and
T.
Ito
, “
Characterization of diamond ultraviolet detectors fabricated with high-quality single-crystalline chemical vapor deposition films
,”
Appl. Phys. Lett.
94
(
22
),
223511
(
2009
).
18.
M.
Pomorski
,
C.
Delfaure
,
N.
Vaissiere
,
H.
Bensalah
,
J.
Barjon
,
M.-A.
Pinault-Thaury
,
D.
Tromson
, and
P.
Bergonzo
, “
Characterization of the charge-carrier transport properties of IIa-Tech SC diamond for radiation detection applications
,”
Phys. Status Solidi A
212
(
11
),
2553
2558
(
2015
).
19.
S.
Almaviva
,
M.
Marinelli
,
E.
Milani
,
G.
Prestopino
,
A.
Tucciarone
,
C.
Verona
,
G.
Verona-Rinati
,
M.
Angelone
,
D.
Lattanzi
,
M.
Pillon
,
R. M.
Montereali
, and
M. A.
Vincenti
, “
Thermal and fast neutron detection in chemical vapor deposition single-crystal diamond detectors
,”
J. Appl. Phys.
103
(
5
),
054501
(
2008
).
20.
N.
Venturi
,
A.
Alexopoulos
,
M.
Artuso
,
F.
Bachmair
,
L.
Bäni
,
M.
Bartosik
,
J.
Beacham
,
H.
Beck
,
V.
Bellini
,
V.
Belyaev
,
B.
Bentele
,
P.
Bergonzo
,
A.
Bes
,
J.-M.
Brom
,
M.
Bruzzi
,
G.
Chiodini
,
D.
Chren
,
V.
Cindro
,
G.
Claus
,
J.
Collot
,
J.
Cumalat
,
A.
Dabrowski
,
R.
D'Alessandro
,
D.
Dauvergne
,
W.
de Boer
,
C.
Dorfer
,
M.
Dunser
,
V.
Eremin
,
G.
Forcolin
,
J.
Forneris
,
L.
Gallin-Martel
,
M.-L.
Gallin-Martel
,
K. K.
Gan
,
M.
Gastal
,
C.
Giroletti
,
M.
Goffe
,
J.
Goldstein
,
A.
Golubev
,
A.
Gorišek
,
E.
Grigoriev
,
J.
Grosse-Knetter
,
A.
Grummer
,
B.
Gui
,
M.
Guthoff
,
I.
Haughton
,
B.
Hiti
,
D.
Hits
,
M.
Hoeferkamp
,
T.
Hofmann
,
J.
Hosslet
,
J.-Y.
Hostachy
,
F.
Hügging
,
C.
Hutton
,
J.
Janssen
,
H.
Kagan
,
K.
Kanxheri
,
G.
Kasieczka
,
R.
Kass
,
F.
Kassel
,
M.
Kis
,
G.
Kramberger
,
S.
Kuleshov
,
A.
Lacoste
,
S.
Lagomarsino
,
A.
Lo Giudice
,
E.
Lukosi
,
C.
Maazouzi
,
I.
Mandic
,
C.
Mathieu
,
M.
Menichelli
,
M.
Mikuž
,
A.
Morozzi
,
J.
Moss
,
R.
Mountain
,
S.
Murphy
,
M.
Muškinja
,
A.
Oh
,
P.
Olivero
,
D.
Passeri
,
H.
Pernegger
,
R.
Perrino
,
F.
Picollo
,
M.
Pomorski
,
R.
Potenza
,
A.
Quadt
,
A.
Re
,
M.
Reichmann
,
G.
Riley
,
S.
Roe
,
D.
Sanz
,
M.
Scaringella
,
D.
Schaefer
,
C. J.
Schmidt
,
D. S.
Smith
,
S.
Schnetzer
,
S.
Sciortino
,
A.
Scorzoni
,
S.
Seidel
,
L.
Servoli
,
B.
Sopko
,
V.
Sopko
,
S.
Spagnolo
,
S.
Spanier
,
K.
Stenson
,
R.
Stone
,
C.
Sutera
,
A.
Taylor
,
B.
Tannenwald
,
M.
Traeger
,
D.
Tromson
,
W.
Trischuk
,
C.
Tuve
,
J.
Velthuis
,
E.
Vittone
,
S.
Wagner
,
R.
Wallny
,
J. C.
Wang
,
J.
Weingarten
,
C.
Weiss
,
T.
Wengler
,
N.
Wermes
,
M.
Yamouni
, and
M.
Zavrtanik
, “
Results on radiation tolerance of diamond detectors
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
924
,
241
244
(
2018
).
21.
J. A.
Dueñas
,
J.
de la Torre Pérez
,
A.
Martín Sánchez
, and
I.
Martel
, “
Diamond detector for alpha-particle spectrometry
,”
Appl. Radiat. Isotopes
90
,
177
180
(
2014
).
22.
P.
Bennett
,
A.
Kargar
,
L.
Cirignano
,
H.
Kim
, and
K.
Shah
, “
CVD diamond for beta particle detection in a gamma-ray background
,”
Proc. SPIE
10762
,
107620Z
(
2018
).
23.
J.
Pietraszko
,
L.
Fabbietti
,
W.
Koenig
, and
M.
Weber
, “
Diamonds as timing detectors for minimum-ionizing particles: The HADES proton-beam monitor and START signal detectors for time of flight measurements
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
618
(
1–3
),
121
123
(
2010
).
24.
G.
Antchev
,
P.
Aspell
,
I.
Atanassov
,
V.
Avati
,
J.
Baechler
,
V.
Berardi
,
M.
Berretti
,
E.
Bossini
,
U.
Bottigli
,
M.
Bozzo
,
P.
Broulím
,
A.
Buzzo
,
F. S.
Cafagna
,
M. G.
Catanesi
,
M.
Csanád
,
T.
Csörgő
,
M.
Deile
,
F. D.
Leonardis
,
A.
D'Orazio
,
M.
Doubek
,
K.
Eggert
,
V.
Eremin
,
F.
Ferro
,
A.
Fiergolski
,
F.
Garcia
,
V.
Georgiev
,
S.
Giani
,
L.
Grzanka
,
C.
Guaragnella
,
J.
Hammerbauer
,
J.
Heino
,
A.
Karev
,
J.
Kašpar
,
J.
Kopal
,
V.
Kundrát
,
S.
Lami
,
G.
Latino
,
R.
Lauhakangas
,
R.
Linhart
,
M. V.
Lokajíček
,
L.
Losurdo
,
M. L.
Vetere
,
F. L.
Rodríguez
,
D.
Lucsanyi
,
M.
Macrí
,
A.
Mercadante
,
N.
Minafra
,
S.
Minutoli
,
T.
Naaranoja
,
F.
Nemes
,
H.
Niewiadomski
,
T.
Novak
,
E.
Oliveri
,
F.
Oljemark
,
M.
Oriunno
,
K.
Österberg
,
P.
Palazzi
,
L.
Paločko
,
V.
Passaro
,
Z.
Peroutka
,
V.
Petruzzelli
,
T.
Politi
,
J.
Procházka
,
F.
Prudenzano
,
M.
Quinto
,
E.
Radermacher
,
E.
Radicioni
,
F.
Ravotti
,
E.
Robutti
,
C.
Royon
,
G.
Ruggiero
,
H.
Saarikko
,
A.
Scribano
,
J.
Smajek
,
W.
Snoeys
,
J.
Sziklai
,
C.
Taylor
,
N.
Turini
,
V.
Vacek
,
J.
Welti
,
P.
Wyszkowski
, and
K.
Zielinski
, “
Diamond detectors for the TOTEM timing upgrade
,”
J. Inst.
12
(
03
),
P03007
P03007
(
2017
).
25.
E.
Bossini
and
N.
Minafra
, “
Diamond detectors for timing measurements in high energy physics
,”
Front. Phys.
8
,
248
(
2020
).
26.
A. M.
Zaitsev
,
Optical Properties of Diamond: A Data Handbook
(
Springer
,
Berlin; New York
,
2001
).
27.
A. T.
Collins
and
A. W. S.
Williams
, “
The nature of the acceptor centre in semiconducting diamond
,”
J. Phys. C: Solid State Phys.
4
(
13
),
1789
1800
(
1971
).
28.
T.
Luo
,
L.
Lindner
,
R.
Blinder
,
M.
Capelli
,
J.
Langer
,
V.
Cimalla
,
F. A.
Hahl
,
X.
Vidal
, and
J.
Jeske
, “
Rapid determination of single substitutional nitrogen Ns concentration in diamond from UV-Vis spectroscopy
,”
Appl. Phys. Lett.
121
(
6
),
064002
(
2022
).
29.
D. D.
Prikhodko
,
S. G.
Pavlov
,
S. A.
Tarelkin
,
V. S.
Bormashov
,
S. G.
Buga
,
M. S.
Kuznetsov
,
S. A.
Terentiev
,
S. A.
Nosukhin
,
H.-W.
Hübers
, and
V. D.
Blank
, “
Intracenter dipole transitions of a hydrogen-like boron acceptor in diamond: Oscillator strengths and line broadening
,”
Diamond Relat. Mater.
120
,
108629
(
2021
).
30.
J. J.
Olivero
and
R. L.
Longbothum
, “
Empirical fits to the Voigt line width: A brief review
,”
J. Quant. Spectrosc. Radiat. Transfer
17
(
2
),
233
236
(
1977
).
31.
J.
Barjon
,
E.
Chikoidze
,
F.
Jomard
,
Y.
Dumont
,
M.-A.
Pinault-Thaury
,
R.
Issaoui
,
O.
Brinza
,
J.
Achard
, and
F.
Silva
, “
Homoepitaxial boron-doped diamond with very low compensation
,”
Phys. Status Solidi A
209
(
9
),
1750
1753
(
2012
).
32.
S. G.
Pavlov
,
D. D.
Prikhodko
,
S. A.
Tarelkin
,
V. S.
Bormashov
,
N. V.
Abrosimov
,
M. S.
Kuznetsov
,
S. A.
Terentiev
,
S. A.
Nosukhin
,
S. Yu.
Troschiev
,
V. D.
Blank
, and
H.-W.
Hübers
, “
Resonant boron acceptor states in semiconducting diamond
,”
Phys. Rev. B
104
(
15
),
155201
(
2021
).
33.
K.
Tsukioka
and
H.
Okushi
, “
Hall mobility and scattering mechanism of holes in boron-doped homoepitaxial chemical vapor deposition diamond thin films
,”
Jpn. J. Appl. Phys., Part 1
45
(
11
),
8571
8577
(
2006
).
34.
Element Six
, see https://e6cvd.com/us/diamond-book-download for “
CVD diamond handbook
” (
2021
).
You do not currently have access to this content.