In this Letter, low-temperature (400 °C) chemical vapor deposition-grown boron nitride (BN) was investigated as the gate dielectric for AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors (MISHEMTs) on a Si substrate. Comprehensive characterizations using x-ray photoelectron spectroscopy, reflection electron energy loss spectroscopy, atomic force microscope, high-resolution transmission electron microscopy, and time-of-flight secondary ion mass spectrometry were conducted to analyze the deposited BN dielectric. Compared with conventional Schottky-gate HEMTs, the MISHEMTs exhibited significantly enhanced performance with 3 orders of magnitude lower reverse gate leakage current, a lower off-state current of 1 × 10−7 mA/mm, a higher on/off current ratio of 108, and lower on-resistance of 5.40 Ω mm. The frequency-dependent conductance measurement was performed to analyze the BN/HEMT interface, unveiling a low interface trap state density (Dit) on the order of 5 × 1011–6 × 1011 cm−2 eV−1. This work shows the effectiveness of low-temperature BN dielectrics and their potential for advancing GaN MISHEMTs toward high-performance power and RF electronics applications.

1.
H.
Amano
,
Y.
Baines
,
E.
Beam
,
M.
Borga
,
T.
Bouchet
,
P. R.
Chalker
,
M.
Charles
,
K. J.
Chen
,
N.
Chowdhury
,
R.
Chu
,
C.
De Santi
,
M. M.
De Souza
,
S.
Decoutere
,
L.
Di Cioccio
,
B.
Eckardt
,
T.
Egawa
,
P.
Fay
,
J. J.
Freedsman
,
L.
Guido
,
O.
Häberlen
,
G.
Haynes
,
T.
Heckel
,
D.
Hemakumara
,
P.
Houston
,
J.
Hu
,
M.
Hua
,
Q.
Huang
,
A.
Huang
,
S.
Jiang
,
H.
Kawai
,
D.
Kinzer
,
M.
Kuball
,
A.
Kumar
,
K. B.
Lee
,
X.
Li
,
D.
Marcon
,
M.
März
,
R.
McCarthy
,
G.
Meneghesso
,
M.
Meneghini
,
E.
Morvan
,
A.
Nakajima
,
E. M. S.
Narayanan
,
S.
Oliver
,
T.
Palacios
,
D.
Piedra
,
M.
Plissonnier
,
R.
Reddy
,
M.
Sun
,
I.
Thayne
,
A.
Torres
,
N.
Trivellin
,
V.
Unni
,
M. J.
Uren
,
M.
Van Hove
,
D. J.
Wallis
,
J.
Wang
,
J.
Xie
,
S.
Yagi
,
S.
Yang
,
C.
Youtsey
,
R.
Yu
,
E.
Zanoni
,
S.
Zeltner
, and
Y.
Zhang
, “
The 2018 GaN power electronics roadmap
,”
J. Phys. D
51
(
16
),
163001
(
2018
).
2.
J. Q.
He
,
W. C.
Cheng
,
Q.
Wang
,
K.
Cheng
,
H. Y.
Yu
, and
Y.
Chai
, “
Recent advances in GaN-based power HEMT devices
,”
Adv. Electron. Mater.
7
,
2001045
(
2021
).
3.
T.
Hashizume
,
K.
Nishiguchi
,
S.
Kaneki
,
J.
Kuzmik
, and
Z.
Yatabe
, “
State of the art on gate insulation and surface passivation for GaN-based power HEMTs
,”
Mater. Sci. Semicond. Process.
78
,
85
(
2018
).
4.
K.
Yi
,
Z.
Jin
,
S.
Bu
,
D.
Wang
,
D.
Liu
,
Y.
Huang
,
Y.
Dong
,
Q.
Yuan
,
Y.
Liu
,
A. T. S.
Wee
, and
D.
Wei
, “
Catalyst-free growth of two-dimensional BCxN materials on dielectrics by temperature-dependent plasma-enhanced chemical vapor deposition
,”
ACS Appl. Mater. Interfaces
12
(
29
),
33113
33120
(
2020
).
5.
G. H.
Lee
,
A. H.
Park
,
J. H.
Lim
,
C.-H.
Lee
,
D.-W.
Jeon
,
Y.-B.
Kim
,
J.
Lee
,
J. W.
Yang
,
E.-K.
Suh
, and
T. H.
Seo
, “
Boron nitride as a passivation capping layer for AlGaN/GaN high electron mobility transistors
,”
J. Nanosci. Nanotechnol.
20
(
7
),
4450
4453
(
2020
).
6.
J. Y.
Tsao
,
S.
Chowdhury
,
M. A.
Hollis
,
D.
Jena
,
N. M.
Johnson
,
K. A.
Jones
,
R. J.
Kaplar
,
S.
Rajan
,
C. G.
Van de Walle
,
E.
Bellotti
,
C. L.
Chua
,
R.
Collazo
,
M. E.
Coltrin
,
J. A.
Cooper
,
K. R.
Evans
,
S.
Graham
,
T. A.
Grotjohn
,
E. R.
Heller
,
M.
Higashiwaki
,
M. S.
Islam
,
P. W.
Juodawlkis
,
M. A.
Khan
,
A. D.
Koehler
,
J. H.
Leach
,
U. K.
Mishra
,
R. J.
Nemanich
,
R. C. N.
Pilawa‐Podgurski
,
J. B.
Shealy
,
Z.
Sitar
,
M. J.
Tadjer
,
A. F.
Witulski
,
M.
Wraback
, and
J. A.
Simmons
, “
Ultrawide-bandgap semiconductors: Research opportunities and challenges
,”
Adv. Elect. Mater.
4
(
1
),
1600501
(
2017
).
7.
M.
Xu
,
D.
Wang
,
K.
Fu
,
D. H.
Mudiyanselage
,
H.
Fu
, and
Y.
Zhao
, “
A review of ultrawide bandgap materials: Properties, synthesis and devices
,”
Oxford Open Mater. Sci.
2
,
itac004
(
2022
).
8.
S.
Roy
,
X.
Zhang
,
A. B.
Puthirath
,
A.
Meiyazhagan
,
S.
Bhattacharyya
,
M. M.
Rahman
,
G.
Babu
,
S.
Susarla
,
S. K.
Saju
,
M. K.
Tran
,
L. M.
Sassi
,
M. A. S. R.
Saadi
,
J.
Lai
,
O.
Sahin
,
S. M.
Sajadi
,
B.
Dharmarajan
,
D.
Salpekar
,
N.
Chakingal
,
A.
Baburaj
,
X.
Shuai
,
A.
Adumbumkulath
,
K. A.
Miller
,
J. M.
Gayle
,
A.
Ajnsztajn
,
T.
Prasankumar
,
V. V. J.
Harikrishnan
,
V.
Ojha
,
H.
Kannan
,
A. Z.
Khater
,
Z.
Zhu
,
S. A.
Iyengar
,
P. A.
da S. Autreto
,
E. F.
Oliveira
,
G.
Gao
,
A. G.
Birdwell
,
M. R.
Neupane
,
T. G.
Ivanov
,
J.
Taha-Tijerina
,
R. M.
Yadav
,
S.
Arepalli
,
R.
Vajtai
, and
P. M.
Ajayan
, “
Structure, properties and applications of two-dimensional hexagonal boron nitride
,”
Adv. Mater.
33
(
44
),
2101589
(
2021
).
9.
Z.
He
,
K.
Fu
,
M.
Xu
,
J.
Zhou
,
T.
Li
, and
Y.
Zhao
, “
Understanding the breakdown behavior of ultrawide-bandgap boron nitride power diodes using device modeling
,”
Phys. Status Solidi RRL
2200397
,
2200397
(
2023
).
10.
A.
Biswas
,
M.
Xu
,
K.
Fu
,
J.
Zhou
,
R.
Xu
,
A. B.
Puthirath
,
J. A.
Hachtel
,
C.
Li
,
S. A.
Iyengar
,
H.
Kannan
,
X.
Zhang
,
T.
Gray
,
R.
Vajtai
,
A.
Glen Birdwell
,
M. R.
Neupane
,
D. A.
Ruzmetov
,
P. B.
Shah
,
T.
Ivanov
,
H.
Zhu
,
Y.
Zhao
, and
P. M.
Ajayan
, “
Properties and device performance of BN thin films grown on GaN by pulsed laser deposition
,”
Appl. Phys. Lett.
121
(
9
),
92105
(
2022
).
11.
B.
Ren
,
M.
Liao
,
M.
Sumiya
,
J.
Li
,
L.
Wang
,
X.
Liu
,
Y.
Koide
, and
L.
Sang
, “
Layered boron nitride enabling high-performance AlGaN/GaN high electron mobility transistor
,”
J. Alloys Compd.
829
,
154542
(
2020
).
12.
T. H.
Yang
,
J.
Brown
,
K.
Fu
,
J.
Zhou
,
K.
Hatch
,
C.
Yang
,
J.
Montes
,
X.
Qi
,
H.
Fu
,
R. J.
Nemanich
, and
Y.
Zhao
, “
AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MISHEMTs) using plasma deposited BN as gate dielectric
,”
Appl. Phys. Lett.
118
(
7
),
072102
(
2021
).
13.
S.
Moon
,
S. J.
Chang
,
Y.
Kim
,
O. F. N.
Okello
,
J.
Kim
,
J.
Kim
,
H. W.
Jung
,
H. K.
Ahn
,
D. S.
Kim
,
S. Y.
Choi
,
J.
Lee
,
J. W.
Lim
, and
J. K.
Kim
, “
Van der Waals heterostructure of hexagonal boron nitride with an AlGaN/GaN epitaxial wafer for high-performance radio frequency applications
,”
ACS Appl. Mater. Interfaces
13
(
49
),
59440
59449
(
2021
).
14.
E.
Zdanowicz
,
A. P.
Herman
,
K.
Opołczyńska
,
S.
Gorantla
,
W.
Olszewski
,
J.
Serafińczuk
,
D.
Hommel
, and
R.
Kudrawiec
, “
Toward h-BN/GaN Schottky diodes: Spectroscopic study on the electronic phenomena at the interface
,”
ACS Appl. Mater. Interfaces
14
(
4
),
6131
6137
(
2022
).
15.
M.
Vos
,
S. W.
King
, and
B. L.
French
, “
Measurement of the band gap by reflection electron energy loss spectroscopy
,”
J. Electron Spectrosc. Relat. Phenom.
212
,
74
(
2016
).
16.
M.
Yamamoto
,
H.
Murata
,
N.
Miyata
,
H.
Takashima
,
M.
Nagao
,
H.
Mimura
,
Y.
Neo
, and
K.
Murakami
, “
Low-temperature direct synthesis of multilayered h-BN without catalysts by inductively coupled plasma-enhanced chemical vapor deposition
,”
ACS Omega
8
(
6
),
5497
5505
(
2023
).
17.
K.
Watanabe
,
T.
Taniguchi
, and
H.
Kanda
, “
Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal
,”
Nat. Mater.
3
(
6
),
404
409
(
2004
).
18.
S.
Hong
,
C. S.
Lee
,
M. H.
Lee
,
Y.
Lee
,
K. Y.
Ma
,
G.
Kim
,
S. I.
Yoon
,
K.
Ihm
,
K. J.
Kim
,
T. J.
Shin
,
S. W.
Kim
,
E.
chae Jeon
,
H.
Jeon
,
J. Y.
Kim
,
H. I.
Lee
,
Z.
Lee
,
A.
Antidormi
,
S.
Roche
,
M.
Chhowalla
,
H. J.
Shin
, and
H. S.
Shin
, “
Ultralow-dielectric-constant amorphous boron nitride
,”
Nature
582
(
7813
),
511
514
(
2020
).
19.
D.
Liu
,
X.
Chen
,
Y.
Yan
,
Z.
Zhang
,
Z.
Jin
,
K.
Yi
,
C.
Zhang
,
Y.
Zheng
,
Y.
Wang
,
J.
Yang
,
X.
Xu
,
J.
Chen
,
Y.
Lu
,
D.
Wei
,
A. T. S.
Wee
, and
D.
Wei
, “
Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation
,”
Nat. Commun.
10
(
1
),
1188
(
2019
).
20.
M. Y.
Hua
,
C.
Liu
,
S.
Yang
,
S. H.
Liu
,
K.
Fu
,
Z. H.
Dong
,
Y.
Cai
,
B. S.
Zhang
, and
K. J.
Chen
, “
Characterization of leakage and reliability of SiNx gate dielectric by low-pressure chemical vapor deposition for GaN-based MIS-HEMTs
,”
IEEE Trans. Electron Devices
62
,
3215
(
2015
).
21.
S. S.
Chng
,
M.
Zhu
,
Z.
Du
,
X.
Wang
,
M.
Whiteside
,
Z. K.
Ng
,
M.
Shakerzadeh
,
S. H.
Tsang
, and
E. H. T.
Teo
, “
Dielectric dispersion and superior thermal characteristics in isotope-enriched hexagonal boron nitride thin films: Evaluation as thermally self-dissipating dielectrics for GaN transistor
,”
J. Mater. Chem. C
8
,
9558
(
2020
).
22.
J.-C.
Gerbedoen
,
A.
Soltani
,
M.
Mattalah
,
M.
Moreau
,
P.
Thevenin
, and
J.-C.
De Jaeger
, “
AlGaN/GaN MISHEMT with hBN as gate dielectric
,”
Diamond Relat. Mater.
18
(
5–8
),
1039
(
2009
).
23.
J.
Vanjaria
,
A. C.
Arjunan
,
Y.
Wu
,
G. S.
Tompa
, and
H.
Yu
, “
Epitaxial Ge thin film growth on Si using a cost-effective process in simplified CVD reactor
,”
ECS J. Solid State Sci. Technol.
9
,
034008
(
2020
).
24.
M.
Whiteside
,
S.
Arulkumaran
, and
G. I.
Ng
, “
Demonstration of vertically-ordered h-BN/AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors on Si substrate
,”
Mater. Sci. Eng., B
270
,
115224
(
2021
).
25.
M.
Xu
,
A.
Biswas
,
T.
Li
,
Z.
He
,
S.
Luo
,
Z.
Mei
,
J.
Zhou
,
C.
Chang
,
A. B.
Puthirath
,
R.
Vajtai
,
P. M.
Ajayan
, and
Y.
Zhao
, “
Vertical β-Ga2O3 metal–insulator–semiconductor diodes with an ultrathin boron nitride interlayer
,”
Appl. Phys. Lett.
123
,
232107
(
2023
).
26.
Y.
Wu
and
H.
Yu
, “
A low-cost novel method to fabricate integrated magnetic core inductor embedded in organic substrate
,”
IEEE Trans. Magn.
58
(
8
),
8401605
(
2022
).
27.
Y.
Wu
,
I.-C.
Yeng
, and
H.
Yu
, “
The improvement of CoZrTaB thin films on different substrates for flexible device applications
,”
AIP Adv.
11
(
2
),
025139
(
2021
).
28.
K.
Fu
,
S.
Luo
,
H.
Fu
,
K.
Hatch
,
S. R.
Alugubelli
,
H.
Liu
,
T.
Li
,
M.
Xu
,
Z.
Mei
,
Z.
He
,
J.
Zhou
,
C.
Chang
,
F. A.
Ponce
,
R.
Nemanich
, and
Y.
Zhao
, “
GaN-based threshold switching behaviors at high temperatures enabled by interface engineering for harsh environment memory applications
,”
IEEE Trans. Electron Devices
71
,
1641
1645
(
2023
).
29.
J.
Vanjaria
,
V.
Hariharan
,
A. C.
Arjunan
,
Y.
Wu
,
G. S.
Tompa
, and
H.
Yu
, “
One-step cost-effective growth of high-quality epitaxial Ge films on Si (100) using a simplified PECVD reactor
,”
Electron. Mater.
2
,
482
(
2021
).
30.
S.
Grenadier
,
J.
Li
,
J.
Lin
, and
H.
Jiang
, “
Dry etching techniques for active devices based on hexagonal boron nitride epilayers
,”
J. Vac. Sci. Technol., A
31
(
6
),
061517
(
2013
).
31.
W.
Lim
,
J.-H.
Jeong
,
J.-H.
Lee
,
S.-B.
Hur
,
J.-K.
Ryu
,
K.-S.
Kim
,
T.-H.
Kim
,
S. Y.
Song
,
J.-I.
Yang
, and
S. J.
Pearton
, “
Temperature dependence of current-voltage characteristics of Ni–AlGaN/GaN Schottky diodes
,”
Appl. Phys. Lett.
97
(
24
),
242103
(
2010
).
32.
X.
Lu
,
J.
Ma
,
H.
Jiang
,
C.
Liu
, and
K. M.
Lau
, “
Characterization of in situ SiNx thin film grown on AlN/GaN heterostructure by metalorganic chemical vapor deposition
,”
Appl. Phys. Lett.
105
,
102911
(
2014
).
33.
H. X.
Jiang
,
C.
Liu
,
Y. Y.
Chen
,
X.
Lu
,
C. W.
Tang
, and
K. M.
Lau
, “
Investigation of in situ SiN as gate dielectric and surface passivation for GaN MISHEMT
,”
IEEE Trans. Electron Devices
64
,
832
(
2017
).
34.
S.
Liu
,
S.
Yang
,
Z.
Tang
,
Q.
Jiang
,
C.
Liu
,
M.
Wang
, and
K. J.
Chen
, “
Al2O3/AlN/GaN MOS-channel-HEMTs with an AlN interfacial layer
,”
IEEE Electron Device Lett.
35
,
723
(
2014
).
35.
P.
Kordoš
,
R.
Stoklas
,
D.
Gregušová
, and
J.
Novák
, “
Characterization of AlGaN/GaN metal-oxide-semiconductor field-effect transistors by frequency dependent conductance analysis
,”
Appl. Phys. Lett.
94
,
223512
(
2009
).
36.
M.
Hua
,
C.
Liu
,
S.
Yang
,
S.
Liu
,
K.
Fu
,
Z.
Dong
,
Y.
Cai
,
B.
Zhang
, and
K. J.
Chen
, “
GaN-based metal-insulator-semiconductor high-electron-mobility transistors using low-pressure chemical vapor deposition SiNx as gate dielectric
,”
IEEE Electron Device Lett.
36
,
448
(
2015
).
37.
J.-J.
Zhu
,
X.-H.
Ma
,
Y.
Xie
,
B.
Hou
,
W.-W.
Chen
,
J.-C.
Zhang
, and
Y.
Hao
, “
Improved interface and transport properties of AlGaN/GaN MIS-HEMTs with PEALD-grown AlN gate dielectric
,”
IEEE Trans. Electron Devices
62
,
512
(
2015
).
38.
H.
Kim
,
H. J.
Yun
,
S.
Choi
, and
B. J.
Choi
, “
Interface trap characterization of AlN/GaN heterostructure with Al2O3, HfO2, and HfO2/Al2O3 dielectrics
,”
J. Vac. Sci. Technol., B
37
,
041203
(
2019
).
39.
S.
Liu
,
S.
Yang
,
Z.
Tang
,
Q.
Jiang
,
C.
Liu
,
M.
Wang
,
B.
Shen
, and
K. J.
Chen
, “
Interface/border trap characterization of Al2O3/AlN/GaN metal-oxide-semiconductor structures with an AlN interfacial layer
,”
Appl. Phys. Lett.
106
,
051605
(
2015
).
40.
S.
Yang
,
Z.
Tang
,
K.-Y.
Wong
,
Y.-S.
Lin
,
C.
Liu
,
Y.
Lu
,
S.
Huang
, and
K. J.
Chen
, “
High-quality interface in Al2O3/GaN/AlGaN/GaN MIS structures with in situ pre-gate plasma nitridation
,”
IEEE Electron Device Lett.
34
,
1497
(
2013
).
41.
Z.
Zhang
,
G.
Yu
,
X.
Zhang
,
X.
Deng
,
S.
Li
,
Y.
Fan
,
S.
Sun
,
L.
Song
,
S.
Tan
, and
D.
Wu
, “
Studies on high-voltage GaN-on-Si MIS-HEMTs using LPCVD Si3N4 as gate dielectric and passivation layer
,”
IEEE Trans. Electron Devices
63
(
2
),
731
(
2016
).
42.
Z.
Liu
,
S.
Huang
,
Q.
Bao
,
X.
Wang
,
K.
Wei
,
H.
Jiang
,
H.
Cui
,
J.
Li
,
C.
Zhao
,
X.
Liu
,
J.
Zhang
,
Q.
Zhou
,
W.
Chen
,
B.
Zhang
, and
L.
Jia
, “
Investigation of the interface between LPCVD-SiNx gate dielectric and III-nitride for AlGaN/GaN MIS-HEMTs
,”
J. Vac. Sci. Technol., B
34
(
4
),
041202
(
2016
).
You do not currently have access to this content.