This Letter reports on the processing, mechanical properties, electrochemical performance, and toxicity behavior of a multiprincipal element Ti35Nb30Zr29Mo3Ta3 alloy. The recovered centimeter-sized cubes or parallelepipeds were polished before analysis. It was found that the homogeneity and yield stress of the alloys get increased when higher volumetric energy densities are applied during processing. The synthesized alloys also exhibited a Young modulus closer to those of bones than those usually reported on the conventional orthopedic metals (60–80 GPa for this alloy against 110 and 4–30 GPa for the Ti-6Al-4V and bone, respectively). The electrochemical corrosion assays performed at 25 and 37 °C, in sodium chloride (NaCl, 0.1 M), deoxygenated high glucose Dulbecco's Modified Eagle Medium (DMEM), and deoxygenated DMEM implemented with fetal bovine serum showed corrosion potentials (Ecorr) ranged in the order NaCl(25 °C) ≈ DMEM + PBS(37 °C) > DMEM(37 °C) and impedances much larger in the DMEM and DMEM + PBS media than in NaCl. Finally, pre-osteoblasts cells cultured in the medium conditioned by the alloy did not evidence cytotoxicity effect, because no effects on the cell proliferation and morphology were observed. These data suggest the biocompatibility of this alloy, indicating no acute toxicity, which is a prerequisite for the integration of an alloy as a bioimplant.

1.
K.
Prasad
,
O.
Bazaka
,
M.
Chua
,
M.
Rochford
,
L.
Fedrick
,
J.
Spoor
,
R.
Symes
,
M.
Tieppo
,
C.
Collins
,
A.
Cao
,
D.
Markwell
,
K.
Bazaka
, and
K.
Ostrikov
, “
Metallic biomaterials: Current challenges and opportunities
,”
Materials
10
,
884
(
2017
).
2.
United Nations, Department of Economic and Social Affairs, Population Division (2019). World Population Prospects 2019: Highlights (ST/ESA/SER.A/423).
3.
D. B.
Miracle
and
O. N.
Senkov
, “
A critical review of high entropy alloys and related concepts
,”
Acta Mater.
122
,
448
511
(
2017
).
4.
J. R.
Scully
,
S. B.
Inman
,
A. Y.
Gerard
,
C. D.
Taylor
,
W.
Windl
,
D. K.
Schreiber
,
P.
Lu
,
J. E.
Saal
, and
G. S.
Frankel
, “
Controlling the corrosion resistance of multi-principal element alloys
,”
Scr. Mater.
188
,
96
101
(
2020
).
5.
T. G.
De Oliveira
,
D. V.
Fagundes
,
P.
Capellato
,
D.
Sachs
, and
A. A. A. P.
Da Silva
, “
A review of biomaterials based on high-entropy alloys
,”
Metals
12
,
1940
(
2022
).
6.
S. L.
Sing
,
C. F.
Tey
,
J. H. K.
Tan
,
S.
Huang
, and
W. Y.
Yeong
, “
3D printing of metals in rapid prototyping of biomaterials: techniques in additive manufacturing
,” in
Rapid Prototyping of Biomaterials
(
Elsevier
,
2020
), pp.
17
40
.
7.
J.
Feng
,
D.
Wei
,
P.
Zhang
,
Z.
Yu
,
C.
Liu
,
W.
Lu
,
K.
Wang
,
H.
Yan
,
L.
Zhang
, and
L.
Wang
, “
Preparation of TiNbTaZrMo high-entropy alloy with tunable Young's modulus by selective laser melting
,”
J. Manuf. Process.
85
,
160
165
(
2023
).
8.
S. F. S.
Shirazi
,
S.
Gharehkhani
,
M.
Mehrali
,
H.
Yarmand
,
H. S. C.
Metselaar
,
N.
Adib Kadri
, and
N. A. A.
Osman
, “
A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing
,”
STAM
16
,
033502
(
2015
).
9.
W.
Zhang
,
A.
Chabok
,
B. J.
Kooi
, and
Y.
Pei
, “
Additive manufactured high entropy alloys: A review of the microstructure and properties
,”
Mater. Des.
220
,
110875
(
2022
).
10.
C.
Liu
,
Y.
Wang
,
Y.
Zhang
,
L.-C.
Zhang
, and
L.
Wang
, “
Deformation mechanisms of additively manufactured TiNbTaZrMo refractory high-entropy alloy: The role of cellular structure
,”
Int. J. Plast.
173
,
103884
(
2024
).
11.
W.
Li
,
Y.
Huang
,
Z.
Xie
,
H.
Chen
,
W.
Li
,
B.
Liu
, and
B.
Wang
, “
Mechanical property and cellular structure of an additive manufactured FeCoNiCrMo0.2 high-entropy alloy at high-velocity deformation
,”
J. Mater. Sci. Technol.
139
,
156
166
(
2023
).
12.
S.
Mooraj
,
J.
Dong
,
K. Y.
Xie
, and
W.
Chen
, “
Formation of printing defects and their effects on mechanical properties of additively manufactured metal alloys
,”
J. Appl. Phys.
132
,
225108
(
2022
).
13.
M.
Long
and
H. J.
Rack
, “
Titanium alloys in total joint replacement—A materials science perspective
,”
Biomaterials
19
,
1621
1639
(
1998
).
14.
X.
Wang
,
S.
Xu
,
S.
Zhou
,
W.
Xu
,
M.
Leary
,
P.
Choong
,
M.
Qian
,
M.
Brandt
, and
Y. M.
Xie
, “
Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review
,”
Biomaterials
83
,
127
141
(
2016
).
15.
X.
Tong
,
Q.
Sun
,
D.
Zhang
,
K.
Wang
,
Y.
Dai
,
Z.
Shi
,
Y.
Li
,
M.
Dargusch
,
S.
Huang
,
J.
Ma
,
C.
Wen
, and
J.
Lin
, “
Impact of scandium on mechanical properties, corrosion behavior, friction and wear performance, and cytotoxicity of a β-type Ti–24Nb–38Zr–2Mo alloy for orthopedic applications
,”
Acta Biomater.
134
,
791
803
(
2021
).
16.
Z.
Li
,
W.
Lai
,
B.
Wang
,
X.
Tong
,
D.
You
,
W.
Li
, and
X.
Wang
, “
A novel Ti42.5Zr42.5Nb5Ta10 multi-principal element alloy with excellent properties for biomedical applications
,”
Intermetallics
151
,
107731
(
2022
).
17.
H.-T.
Lee
and
C.-C.
Lin
, “
Enhanced cell proliferation on biomedical titanium surfaces by laser ablation-induced micro- and nanoscale hybrid structures
,”
Mater. Trans.
60
,
1799
1806
(
2019
).
18.
A.
Sumayli
, “
Recent trends on bioimplant materials: A review
,”
Mater. Today Proc.
46
,
2726
2731
(
2021
).
19.
H.
Ahirwar
,
Y.
Zhou
,
C.
Mahapatra
,
S.
Ramakrishna
,
P.
Kumar
, and
H. S.
Nanda
, “
Materials for orthopedic bioimplants: Modulating degradation and surface modification
,”
Coatings
10
,
264
(
2020
).
You do not currently have access to this content.