Measuring the temperature dependence of material properties is a standard method for better understanding the microscopic origins for that property. Surprisingly, only a few experimental studies of thermal boundary conductance at high temperatures exist. This lack of high temperature data makes it difficult to evaluate competing theories for how inelastic processes contribute to thermal conductance. To address this, we report time domain thermoreflectance measurements of the thermal boundary conductance for TiN on diamond, silicon-carbide, silicon, and germanium between 120 and 1000 K. In all systems, the interface conductance increases monotonically without stagnating at higher temperatures. For TiN/SiC interfaces, G ranges from 330 to 1000 MW/m2-K, with a room temperature conductance of 750 MW/m2-K. The interface conductance for TiN/diamond ranges from 140 to 950 MW/m2-K. Notably, for all four interfacial systems, the conductance continues to increase with temperature even after all phonon modes in the vibrationally soft material are thermally excited. This observation suggests that inelastic processes are significant contributors to the thermal conductance in all four interfacial systems, regardless of whether the materials forming the interface are vibrationally similar or dissimilar. Our study fills a notable gap in the literature for how interfacial conductance evolves at high temperatures and tests burgeoning theories for the role of inelastic processes in interfacial thermal transport.

1.
J. Y.
Tsao
,
S.
Chowdhury
,
M. A.
Hollis
,
D.
Jena
,
N. M.
Johnson
,
K. A.
Jones
,
R. J.
Kaplar
,
S.
Rajan
,
C. G.
de Walle
,
E.
Bellotti
,
C. L.
Chua
,
R.
Collazo
,
M. E.
Coltrin
,
J. A.
Cooper
,
K. R.
Evans
,
S.
Graham
,
T. A.
Grotjohn
,
E. R.
Heller
,
M.
Higashiwaki
,
M. S.
Islam
,
P. W.
Juodawlkis
,
M. A.
Khan
,
A. D.
Koehler
,
J. H.
Leach
,
U. K.
Mishra
,
R. J.
Nemanich
,
R. C. N.
Pilawa-Podgurski
,
J. B.
Shealy
,
Z.
Sitar
,
M. J.
Tadjer
,
A. F.
Witulski
,
M.
Wraback
, and
J. A.
Simmons
, “
Ultrawide-bandgap semiconductors: Research opportunities and challenges
,”
Adv. Electron. Mater.
4
(
1
),
1600501
(
2018
).
2.
D. G.
Cahill
,
P. V.
Braun
,
G.
Chen
,
D. R.
Clarke
,
S.
Fan
,
K. E.
Goodson
,
P.
Keblinski
,
W. P.
King
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
S. R.
Phillpot
,
E.
Pop
, and
L.
Shi
, “
Nanoscale thermal transport. II. 2003–2012
,”
Appl. Phys. Rev.
1
(
1
),
011305
(
2014
).
3.
C.
Monachon
,
L.
Weber
, and
C.
Dames
, “
Thermal boundary conductance: A materials science perspective
,”
Annu. Rev. Mater. Res.
46
,
433
463
(
2016
).
4.
P. E.
Hopkins
,
P. M.
Norris
, and
R. J.
Stevens
, “
Influence of inelastic scattering at metal-dielectric interfaces
,”
J. Heat Transfer
130
(
2
),
022401
(
2008
).
5.
Z.
Cheng
,
Y. R.
Koh
,
H.
Ahmad
,
R.
Hu
,
J.
Shi
,
M. E.
Liao
,
Y.
Wang
,
T.
Bai
,
R.
Li
,
E.
Lee
,
E. A.
Clinton
,
C. M.
Matthews
,
Z.
Engel
,
L.
Yates
,
T.
Luo
,
M. S.
Goorsky
,
W. A.
Doolittle
,
Z.
Tian
,
P. E.
Hopkins
, and
S.
Graham
, “
Thermal conductance across harmonic-matched epitaxial Al-sapphire heterointerfaces
,”
Commun. Phys.
3
(
1
),
115
(
2020
).
6.
R. M.
Costescu
,
M. A.
Wall
, and
D. G.
Cahill
, “
Thermal conductance of epitaxial interfaces
,”
Phys. Rev. B
67
(
5
),
054302
(
2003
).
7.
P. E.
Hopkins
,
T.
Beechem
,
J. C.
Duda
,
K.
Hattar
,
J. F.
Ihlefeld
,
M. A.
Rodriguez
, and
E. S.
Piekos
, “
Influence of anisotropy on thermal boundary conductance at solid interfaces
,”
Phys. Rev. B
84
(
12
),
125408
(
2011
).
8.
K. C.
Collins
,
S.
Chen
, and
G.
Chen
, “
Effects of surface chemistry on thermal conductance at aluminum–diamond interfaces
,”
Appl. Phys. Lett.
97
(
8
),
083102
(
2010
).
9.
H.-K.
Lyeo
and
D. G.
Cahill
, “
Thermal conductance of interfaces between highly dissimilar materials
,”
Phys. Rev. B
73
(
14
),
144301
(
2006
).
10.
J. T.
Gaskins
,
G.
Kotsonis
,
A.
Giri
,
S.
Ju
,
A.
Rohskopf
,
Y.
Wang
,
T.
Bai
,
E.
Sachet
,
C. T.
Shelton
,
Z.
Liu
,
Z.
Cheng
,
B. M.
Foley
,
S.
Graham
,
T.
Luo
,
A.
Henry
,
M. S.
Goorsky
,
J.
Shiomi
,
J.-P.
Maria
, and
P. E.
Hopkins
, “
Thermal boundary conductance across heteroepitaxial ZnO/GaN interfaces: Assessment of the phonon gas model
,”
Nano Lett.
18
(
12
),
7469
7477
(
2018
).
11.
Q.
Li
,
F.
Liu
,
S.
Hu
,
H.
Song
,
S.
Yang
,
H.
Jiang
,
T.
Wang
,
Y. K.
Koh
,
C.
Zhao
,
F.
Kang
,
J.
Wu
,
X.
Gu
,
B.
Sun
, and
X.
Wang
, “
Inelastic phonon transport across atomically sharp metal/semiconductor interfaces
,”
Nat. Commun.
13
(
1
),
4901
(
2022
).
12.
N.
Ye
,
J. P.
Feser
,
S.
Sadasivam
,
T. S.
Fisher
,
T.
Wang
,
C.
Ni
, and
A.
Janotti
, “
Thermal transport across metal silicide-silicon interfaces: An experimental comparison between epitaxial and nonepitaxial interfaces
,”
Phys. Rev. B
95
(
8
),
085430
(
2017
).
13.
B.
Huang
and
Y. K.
Koh
, “
Negligible electronic contribution to heat transfer across intrinsic metal/graphene interfaces
,”
Adv. Mater. Interfaces
4
(
20
),
1700559
(
2017
).
14.
B. F.
Donovan
,
C. J.
Szwejkowski
,
J. C.
Duda
,
R.
Cheaito
,
J. T.
Gaskins
,
C.-Y.
Peter Yang
,
C.
Constantin
,
R. E.
Jones
, and
P. E.
Hopkins
, “
Thermal boundary conductance across metal-gallium nitride interfaces from 80 to 450 K
,”
Appl. Phys. Lett.
105
(
20
),
203502
(
2014
).
15.
J.
Chen
,
X.
Xu
,
J.
Zhou
, and
B.
Li
, “
Interfacial thermal resistance: Past, present, and future
,”
Rev. Mod. Phys.
94
(
2
),
025002
(
2022
).
16.
E. T.
Swartz
and
R. O.
Pohl
, “
Thermal boundary resistance
,”
Rev. Mod. Phys.
61
(
3
),
605
668
(
1989
).
17.
K.
Sääskilahti
,
J.
Oksanen
,
J.
Tulkki
, and
S.
Volz
, “
Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces
,”
Phys. Rev. B
90
(
13
),
134312
(
2014
).
18.
Z.
Lu
,
A. M.
Chaka
, and
P. V.
Sushko
, “
Thermal conductance enhanced via inelastic phonon transport by atomic vacancies at Cu/Si interfaces
,”
Phys. Rev. B
102
(
7
),
075449
(
2020
).
19.
R. J.
Stevens
,
L. V.
Zhigilei
, and
P. M.
Norris
, “
Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: Nonequilibrium molecular dynamics simulations
,”
Int. J. Heat Mass Transfer
50
(
19–20
),
3977
3989
(
2007
).
20.
J.
Dai
and
Z.
Tian
, “
Rigorous formalism of anharmonic atomistic Green's function for three-dimensional interfaces
,”
Phys. Rev. B
101
(
4
),
041301
(
2020
).
21.
Y.
Guo
,
Z.
Zhang
,
M.
Bescond
,
S.
Xiong
,
M.
Nomura
, and
S.
Volz
, “
Anharmonic phonon-phonon scattering at the interface between two solids by nonequilibrium Green's function formalism
,”
Phys. Rev. B
103
(
17
),
174306
(
2021
).
22.
S.
Sadasivam
,
N.
Ye
,
J. P.
Feser
,
J.
Charles
,
K.
Miao
,
T.
Kubis
, and
T. S.
Fisher
, “
Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green's function transport simulations
,”
Phys. Rev. B
95
(
8
),
085310
(
2017
).
23.
G. T.
Hohensee
,
R. B.
Wilson
, and
D. G.
Cahill
, “
Thermal conductance of metal–diamond interfaces at high pressure
,”
Nat. Commun.
6
(
1
),
6578
(
2015
).
24.
P. E.
Hopkins
,
R. N.
Salaway
,
R. J.
Stevens
, and
P. M.
Norris
, “
Temperature-dependent thermal boundary conductance at Al/Al2O3 and Pt/Al2O3 interfaces
,”
Int. J. Thermophys.
28
(
3
),
947
957
(
2007
).
25.
P. E.
Hopkins
,
J. C.
Duda
, and
P. M.
Norris
, “
Anharmonic phonon interactions at interfaces and contributions to thermal boundary conductance
,”
J. Heat Transfer
133
(
6
),
062401
(
2011
).
26.
J.
Wang
,
Z.
Wang
,
K.
Yang
,
N.
Chen
,
J.
Ni
,
J.
Song
,
Q.
Li
,
F.
Sun
,
Y.
Liu
, and
T.
Fan
, “
Enhanced heat transport capability across boron nitride/copper interface through inelastic phonon scattering
,”
Adv. Funct. Mater.
32
(
40
),
2206545
(
2022
).
27.
W.
Zheng
,
B.
Huang
,
H.
Li
, and
Y. K.
Koh
, “
Achieving huge thermal conductance of metallic nitride on graphene through enhanced elastic and inelastic phonon transmission
,”
ACS Appl. Mater. Interfaces
10
(
41
),
35487
35494
(
2018
).
28.
S.
Khan
,
F.
Angeles
,
J.
Wright
,
S.
Vishwakarma
,
V. H.
Ortiz
,
E.
Guzman
,
F.
Kargar
,
A. A.
Balandin
,
D. J.
Smith
,
D.
Jena
,
H. G.
Xing
, and
R.
Wilson
, “
Properties for thermally conductive interfaces with wide band gap materials
,”
ACS Appl. Mater. Interfaces
14
(
31
),
36178
36188
(
2022
).
29.
D. G.
Cahill
, “
Analysis of heat flow in layered structures for time-domain thermoreflectance
,”
Rev. Sci. Instrum.
75
(
12
),
5119
5122
(
2004
).
30.
M. J.
Gomez
,
K.
Liu
,
J. G.
Lee
, and
R. B.
Wilson
, “
High sensitivity pump–probe measurements of magnetic, thermal, and acoustic phenomena with a spectrally tunable oscillator
,”
Rev. Sci. Instrum.
91
(
2
),
023905
(
2020
).
31.
R. J.
Stoner
and
H. J.
Maris
, “
Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K
,”
Phys. Rev. B
48
(
22
),
16373
16387
(
1993
).
32.
P.
Reddy
,
K.
Castelino
, and
A.
Majumdar
, “
Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion
,”
Appl. Phys. Lett.
87
(
21
),
211908
(
2005
).
33.
Y.
Zhou
and
M.
Hu
, “
Full quantification of frequency-dependent interfacial thermal conductance contributed by two- and three-phonon scattering processes from nonequilibrium molecular dynamics simulations
,”
Phys. Rev. B
95
(
11
),
115313
(
2017
).
34.
T.
Feng
,
Y.
Zhong
,
J.
Shi
, and
X.
Ruan
, “
Unexpected high inelastic phonon transport across solid-solid interface: Modal nonequilibrium molecular dynamics simulations and landauer analysis
,”
Phys. Rev. B
99
(
4
),
045301
(
2019
).
35.
Z.
Tong
,
S.
Li
,
X.
Ruan
, and
H.
Bao
, “
Comprehensive first-principles analysis of phonon thermal conductivity and electron-phonon coupling in different metals
,”
Phys. Rev. B
100
(
14
),
144306
(
2019
).
36.
R. B.
Wilson
,
B. A.
Apgar
,
W.-P.
Hsieh
,
L. W.
Martin
, and
D. G.
Cahill
, “
Thermal conductance of strongly bonded metal-oxide interfaces
,”
Phys. Rev. B
91
(
11
),
115414
(
2015
).
37.
J.
Garg
,
N.
Bonini
, and
N.
Marzari
, “
First-principles determination of phonon lifetimes, mean free paths, and thermal conductivities in crystalline materials: Pure silicon germanium
,” in
Length-Scale Dependent Phonon Interactions
(
Springer
,
2014
), pp.
115
136
.
38.
M. L.
Huberman
and
A. W.
Overhauser
, “
Electronic Kapitza conductance at a diamond-Pb interface
,”
Phys. Rev. B
50
(
5
),
2865
2873
(
1994
).
39.
S.
Dal Forno
and
J.
Lischner
, “
Electron-phonon coupling and hot electron thermalization in titanium nitride
,”
Phys. Rev. Mater.
3
(
11
),
115203
(
2019
).
40.
P. E.
Hopkins
and
P. M.
Norris
, “
Relative contributions of inelastic and elastic diffuse phonon scattering to thermal boundary conductance across solid interfaces
,”
J. Heat Transfer
131
(
2
),
022402
(
2009
).
41.
J. C.
Duda
,
T. E.
Beechem
,
J. L.
Smoyer
,
P. M.
Norris
, and
P. E.
Hopkins
, “
Role of dispersion on phononic thermal boundary conductance
,”
J. Appl. Phys.
108
(
7
),
073515
(
2010
).
42.
C. Y.
Ho
,
R. W.
Powell
, and
P. E.
Liley
, “
Thermal conductivity of the elements
,”
J. Phys. Chem. Ref. Data
1
(
2
),
279
421
(
1972
).
43.
C.
Edtmaier
,
E.
Bauer
,
Z. S.
Tako
, and
J.
Segl
, “
Thermal conductivity behaviour of Al/diamond and Ag/diamond composites in the temperature range 4 K < T < 293 K
,”
Mater. Sci. Forum
825–826
,
197
204
(
2015
).
You do not currently have access to this content.