Integrating second order nonlinear ( χ ( 2 )) optical materials on chip is an ongoing challenge for Si photonics. Noncentrosymmetric molecular crystals have the potential to deliver high χ ( 2 ) nonlinearity with good thermal stability, but so far have been limited to growth from solution or the melt, which are both difficult to control and scale up in manufacturing. Here, we show that large (>100 μm) single crystal domains of the nonlinear molecule 2-[3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene] malononitrile (OH1) can be grown monolithically on either glass or Si via vacuum evaporation, followed by a short thermal annealing step. The crystallites are tens of nanometer thick and exhibit strong second harmonic generation with their primary χ ( 2 ) tensor component lying predominantly in plane. Remarkably, we find that a single domain can grow uninterrupted through nearby channels etched on a Si wafer, which may provide a path to integrate OH1 on Si or Si3N4 waveguides for a broad range of χ ( 2 )-based photonic integrated circuit functionality.

1.
J.
Leuthold
,
W.
Freude
,
J.-M.
Brosi
,
R.
Baets
,
P.
Dumon
,
I.
Biaggio
,
M. L.
Scimeca
,
F.
Diederich
,
B.
Frank
, and
C.
Koos
, “
Silicon organic hybrid technology—A platform for practical nonlinear optics
,”
Proc. IEEE
97
,
1304
1316
(
2009
).
2.
I.
Biaggio
, “
The appeal of small molecules for practical nonlinear optics
,”
Chemistry
28
,
e202103168
(
2022
).
3.
L. R.
Dalton
,
P. A.
Sullivan
, and
D. H.
Bale
, “
Electric field poled organic electro-optic materials: State of the art and future prospects
,”
Chem. Rev.
110
,
25
55
(
2010
). pMID: 19848381.
4.
Z.
Wang
,
W.
Sun
,
A.
Chen
,
I.
Kosilkin
,
D.
Bale
, and
L. R.
Dalton
, “
Organic electro-optic thin films by simultaneous vacuum deposition and laser-assisted poling
,”
Opt. Lett.
36
,
2853
2855
(
2011
).
5.
L.
Dallachiesa
and
I.
Biaggio
, “
Electrically poled vapor-deposited organic glasses for integrated electro-optics
,”
Opt. Lett.
47
,
1924
1927
(
2022
).
6.
S.-J.
Kwon
,
C.
Hunziker
,
O.-P.
Kwon
,
M.
Jazbinsek
, and
P.
Günter
, “
Large-area organic electro-optic single crystalline thin films grown by evaporation-induced local supersaturation with surface interactions
,”
Cryst. Growth Des.
9
,
2512
2516
(
2009
).
7.
A.
Hermans
,
S.
Clemmen
,
R.
Baets
,
J.
Genoe
, and
C.
Rolin
, “
Growth of organic crystalline thin films with strong second-order nonlinearity for integrated optics
,” in
21st European Conference on Integratred Optics (ECIO 2019)
,
2019
.
8.
H.
Figi
,
M.
Jazbinšek
,
C.
Hunziker
,
M.
Koechlin
, and
P.
Günter
, “
Electro-optic single-crystalline organic waveguides and nanowires grown from the melt
,”
Opt. Express
16
,
11310
11327
(
2008
).
9.
D.
Korn
,
M.
Jazbinsek
,
R.
Palmer
,
M.
Baier
,
L.
Alloatti
,
H.
Yu
,
W.
Bogaerts
,
G.
Lepage
,
P.
Verheyen
,
P.
Absil
,
P.
Guenter
,
C.
Koos
,
W.
Freude
, and
J.
Leuthold
, “
Electro-optic organic crystal silicon high-speed modulator
,”
IEEE Photonics J.
6
,
1
9
(
2014
).
10.
H.
Figi
,
D. H.
Bale
,
A.
Szep
,
L. R.
Dalton
, and
A.
Chen
, “
Electro-optic modulation in horizontally slotted silicon/organic crystal hybrid devices
,”
J. Opt. Soc. Am. B
28
,
2291
2300
(
2011
).
11.
M. A.
Fusella
,
S.
Yang
,
K.
Abbasi
,
H. H.
Choi
,
Z.
Yao
,
V.
Podzorov
,
A.
Avishai
, and
B. P.
Rand
, “
Use of an underlayer for large area crystallization of rubrene thin films
,”
Chem. Mater.
29
,
6666
6673
(
2017
).
12.
J. T.
Dull
,
Y.
Wang
,
H.
Johnson
,
K.
Shayegan
,
E.
Shapiro
,
R. D.
Priestley
,
Y. H.
Geerts
, and
B. P.
Rand
, “
Thermal properties, molecular structure, and thin-film organic semiconductor crystallization
,”
J. Phys. Chem. C
124
,
27213
27221
(
2020
).
13.
M.
Jazbinsek
and
P.
Günter
, “
6—molecular crystals and thin films for photonics
,” in
Handbook of Organic Materials for Electronic and Photonic Devices
, Second Edition, Woodhead Publishing Series in Electronic and Optical Materials, edited by
O.
Ostroverkhova
(
Woodhead Publishing
,
2019
), pp.
177
210
.
14.
B.
Ruiz
,
M.
Jazbinsek
, and
P.
Günter
, “
Crystal growth of dast
,”
Cryst. Growth Des.
8
,
4173
4184
(
2008
).
15.
Z.
Yang
,
L.
Mutter
,
M.
Stillhart
,
B.
Ruiz
,
S.
Aravazhi
,
M.
Jazbinsek
,
A.
Schneider
,
V.
Gramlich
, and
P.
Günter
, “
Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation
,”
Adv. Funct. Mater.
17
,
2018
2023
(
2007
).
16.
J.-H.
Jeong
,
B.-J.
Kang
,
J.-S.
Kim
,
M.
Jazbinsek
,
S.-H.
Lee
,
S.-C.
Lee
,
I.-H.
Baek
,
H.
Yun
,
J.
Kim
,
Y. S.
Lee
,
J.-H.
Lee
,
J.-H.
Kim
,
F.
Rotermund
, and
O.-P.
Kwon
, “
High-power broadband organic THz generator
,”
Sci. Rep.
3
,
3200
(
2013
).
17.
M.
Fujiwara
,
M.
Maruyama
,
M.
Sugisaki
,
H.
Takahashi
,
S.-I.
Aoshima
,
R. J.
Cogdell
, and
H.
Hashimoto
, “
Determination of the d-tensor components of a single crystal of N-Benzyl-2-methyl-4-nitroaniline
,”
Jpn. J. Appl. Phys., Part 1
46
,
1528
(
2007
).
18.
M.
Rohlfing
and
S. G.
Louie
, “
Electron-hole excitations and optical spectra from first principles
,”
Phys. Rev. B
62
,
4927
(
2000
).
19.
S.
Sharifzadeh
, “
Many-body perturbation theory for understanding optical excitations in organic molecules and solids
,”
J. Phys.: Condens. Matter
30
,
153002
(
2018
).
20.
X.
Blase
,
I.
Duchemin
,
D.
Jacquemin
, and
P.-F.
Loos
, “
The Bethe–Salpeter equation formalism: From physics to chemistry
,”
J. Phys. Chem. Lett.
11
,
7371
7382
(
2020
).
21.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
22.
C.
Hunziker
,
S.-J.
Kwon
,
H.
Figi
,
F.
Juvalta
,
O.-P.
Kwon
,
M.
Jazbinsek
, and
P.
Günter
, “
Configurationally locked, phenolic polyene organic crystal 2-{3–(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene}malononitrile: Linear and nonlinear optical properties
,”
J. Opt. Soc. Am. B
25
,
1678
1683
(
2008
).
23.
H.
Xu
,
Y.
Sun
,
Y.
Kan
, and
K.
Gao
, “
Recent progress in design of organic electro-optic materials with ultrahigh electro-optic activities
,”
Chin. J. Chem.
40
,
3001
3012
(
2022
).
24.
A.
Boes
,
L.
Chang
,
C.
Langrock
,
M.
Yu
,
M.
Zhang
,
Q.
Lin
,
M.
Lončar
,
M.
Fejer
,
J.
Bowers
, and
A.
Mitchell
, “
Lithium niobate photonics: Unlocking the electromagnetic spectrum
,”
Science
379
,
eabj4396
(
2023
).
You do not currently have access to this content.