Inorganic CsPbI2Br perovskites solar cells (PSCs) have attracted extensive interest owing to their outstanding optoelectronic properties. Nevertheless, the undesirable perovskite film quality and severe charge recombination dramatically restrict their performance improvement. Herein, we propose an additive strategy to modulate the CsPbI2Br crystallization process and reduce the defect density by adding 3-(1-pyridinio)-1-propanesulfonate (PPS) zwitterionic molecules into the perovskite precursor solution. The incorporation of PPS zwitterion can not only retard the crystal growth rate of CsPbI2Br with uniform morphology and enlarged grain size, but also effectively passivate defects via interacting with the uncoordinated sites in the perovskite film. In addition, the PPS zwitterion greatly ameliorates the energy level alignments at the interface. Thus, the photogenerated carriers are more efficiently extracted, and the nonradiative recombination is significantly suppressed. With these benefits, the optimized PPS-based CsPbI2Br device delivers a champion efficiency of 16.37% with high open-circuit voltage (VOC) of 1.302 V in contrast to the pristine device with an inferior efficiency of 14.26% (VOC of 1.183 V). In addition, the unencapsulated device with PPS presents improved long-term stability by preserving ∼85% of the initial efficiency after 760 h storage in ambient atmosphere. These findings provided important insights into the additive strategy of using zwitterionic materials for constructing efficient and stable inorganic PSCs.

1.
H.
Gao
,
K.
Xiao
,
R.
Lin
,
S.
Zhao
,
W.
Wang
,
S.
Dayneko
,
C.
Duan
,
C.
Ji
,
H.
Sun
,
A. D.
Bui
,
C.
Liu
,
J.
Wen
,
W.
Kong
,
H.
Luo
,
X.
Zheng
,
Z.
Liu
,
H.
Nguyen
,
J.
Xie
,
L.
Li
,
M. I.
Saidaminov
, and
H.
Tan
,
Science
383
,
855
859
(
2024
).
2.
X.
Li
,
W.
Zhang
,
X.
Guo
,
C.
Lu
,
J.
Wei
, and
J.
Fang
,
Science
375
,
434
437
(
2022
).
3.
S.
Zhang
,
F.
Ye
,
X.
Wang
,
R.
Chen
,
H.
Zhang
,
L.
Zhan
,
X.
Jiang
,
Y.
Li
,
X.
Ji
,
S.
Liu
,
M.
Yu
,
F.
Yu
,
Y.
Zhang
,
R.
Wu
,
Z.
Liu
,
Z.
Ning
,
D.
Neher
,
L.
Han
,
Y.
Lin
,
H.
Tian
,
W.
Chen
,
M.
Stolterfoht
,
L.
Zhang
,
W.-H.
Zhu
, and
Y.
Wu
,
Science
380
,
404
409
(
2023
).
4.
S.
Zhou
,
S.
Fu
,
C.
Wang
,
W.
Meng
,
J.
Zhou
,
Y.
Zou
,
Q.
Lin
,
L.
Huang
,
W.
Zhang
,
G.
Zeng
,
D.
Pu
,
H.
Guan
,
C.
Wang
,
K.
Dong
,
H.
Cui
,
S.
Wang
,
T.
Wang
,
G.
Fang
, and
W.
Ke
,
Nature
624
,
69
73
(
2023
).
5.
C. C.
Boyd
,
R.
Cheacharoen
,
T.
Leijtens
, and
M. D.
McGehee
,
Chem. Rev.
119
,
3418
3451
(
2019
).
6.
A. K.
Jena
,
A.
Kulkarni
, and
T.
Miyasaka
,
Chem. Rev.
119
,
3036
3103
(
2019
).
7.
F.
Wu
,
W.
Gao
,
H.
Yu
,
L.
Zhu
,
L.
Li
, and
C.
Yang
,
J. Mater. Chem. A
6
,
4443
4448
(
2018
).
8.
H.
Wang
,
M.
Yang
,
W.
Cai
, and
Z.
Zang
,
Nano Lett.
23
,
4479
4486
(
2023
).
9.
M.
Tang
,
B.
He
,
D.
Dou
,
Y.
Liu
,
J.
Duan
,
Y.
Zhao
,
H.
Chen
, and
Q.
Tang
,
Chem. Eng. J.
375
,
121930
(
2019
).
10.
J.
Lv
,
W.
Zhao
,
W.
Li
,
J.
Yu
,
M.
Zhang
,
X.
Han
, and
T.
Tanaka
,
J. Mater. Chem. C
10
,
4276
4285
(
2022
).
11.
D.
Zhang
,
X.
Zhang
,
T.
Guo
,
J.
Zou
,
Y.
Zhou
,
J.
Jin
,
Z.
Zhu
,
Q.
Cao
,
J.
Zhang
, and
Q.
Tai
,
Small
19
,
2205604
(
2023
).
12.
D.
Xu
,
J.
Wang
,
Y.
Duan
,
S.
Yang
,
H.
Zou
,
L.
Yang
,
N.
Zhang
,
H.
Zhou
,
X.
Lei
,
M.
Wu
,
S.
Liu
, and
Z.
Liu
,
Adv. Funct. Mater.
33
,
2304237
(
2023
).
13.
N.
Liu
,
Z.
Liu
,
J.
Wang
,
Q.
Ye
,
Y.
Wang
,
W.
Han
,
W.
Xu
,
J.
Zhang
,
L.
Huang
,
Z.
Hu
,
Y.
Zhu
, and
X.
Liu
,
Chem. Eng. J.
485
,
149590
(
2024
).
14.
S.
Fu
,
X.
Li
,
L.
Wan
,
W.
Zhang
,
W.
Song
, and
J.
Fang
,
Nano-Micro Lett.
12
,
170
(
2020
).
15.
Y.
Li
,
N.
Liu
,
Z.
Xu
,
Z.
Xu
,
Y.
Pan
,
J.
Zhang
,
L.
Huang
,
Z.
Hu
,
Y.
Zhu
, and
X.
Liu
,
Appl. Phys. Lett.
123
,
163901
(
2023
).
16.
P.
Fu
,
Z.
Liu
,
D.
Xu
,
B.
Yang
,
Y.
Liu
,
Z.
Feng
,
Z.
Feng
,
X.
Guo
, and
C.
Li
,
Sol. RRL
6
,
2101057
(
2022
).
17.
X.
Liu
,
J.
Li
,
X.
Cui
,
X.
Wang
, and
D.
Yang
,
J. Mater. Chem. C
11
,
426
455
(
2023
).
18.
A.
Wang
,
X.
Deng
,
J.
Wang
,
S.
Wang
,
X.
Niu
,
F.
Hao
, and
L.
Ding
,
Nano Energy
81
,
105631
(
2021
).
19.
E. L.
Lim
,
J.
Yang
, and
Z.
Wei
,
Energy Environ. Sci.
16
,
862
888
(
2023
).
20.
S.
Shan
,
C.
Xu
,
H.
Wu
,
B.
Niu
,
W.
Fu
,
L.
Zuo
, and
H.
Chen
,
Adv. Energy Mater.
13
,
2203682
(
2023
).
21.
J.
Song
,
H.
Xie
,
E. L.
Lim
,
A.
Hagfeldt
, and
D.
Bi
,
Adv. Energy Mater.
12
,
2201854
(
2022
).
22.
T.
Ozturk
,
E.
Akman
,
A. E.
Shalan
, and
S.
Akin
,
Nano Energy
87
,
106157
(
2021
).
23.
Q.
Tai
,
K.-C.
Tang
, and
F.
Yan
,
Energy Environ. Sci.
12
,
2375
2405
(
2019
).
24.
J.
Ma
,
J.
Su
,
Z.
Lin
,
J.
He
,
L.
Zhou
,
T.
Li
,
J.
Zhang
,
S.
Liu
,
J.
Chang
, and
Y.
Hao
,
Energy Environ. Mater.
5
,
637
644
(
2022
).
25.
J.
Wang
,
S.
Fu
,
X.
Liu
,
H.
Yuan
,
Z.
Xu
,
C.
Wang
,
J.
Zhang
,
L.
Huang
,
Z.
Hu
, and
Y.
Zhu
,
J. Alloys Compd.
891
,
161971
(
2022
).
26.
J.
Li
,
J.
Yang
,
J.
Ma
,
J.
Liang
,
Y.
Liu
,
X.
Hu
,
C.
Chen
,
W.
Yang
,
J.
Min
,
Q.
Bao
,
G.
Fang
, and
C.
Tao
,
Chem. Eng. J.
417
,
129247
(
2021
).
27.
E.-C.
Shen
,
J.-D.
Chen
,
Y.
Tian
,
Y.-X.
Luo
,
Y.
Shen
,
Q.
Sun
,
T.-Y.
Jin
,
G.-Z.
Shi
,
Y.-Q.
Li
, and
J.-X.
Tang
,
Adv. Sci.
7
,
1901952
(
2020
).
28.
Z.
Wang
,
A. K.
Baranwal
,
M.
Akmal Kamarudin
,
P.
Zhang
,
G.
Kapil
,
T.
Ma
, and
S.
Hayase
,
Nano Energy
66
,
104180
(
2019
).
29.
M. J.
Jeong
,
S. W.
Jeon
,
S. Y.
Kim
, and
J. H.
Noh
,
Adv. Energy Mater.
13
,
2300698
(
2023
).
30.
G.
Yin
,
H.
Zhao
,
H.
Jiang
,
S.
Yuan
,
T.
Niu
,
K.
Zhao
,
Z.
Liu
, and
S.
Liu
,
Adv. Funct. Mater.
28
,
1803269
(
2018
).
31.
H.
Zai
,
D.
Zhang
,
L.
Li
,
C.
Zhu
,
S.
Ma
,
Y.
Zhao
,
Z.
Zhao
,
C.
Chen
,
H.
Zhou
,
Y.
Li
, and
Q.
Chen
,
J. Mater. Chem. A
6
,
23602
23609
(
2018
).
32.
W.
Chen
,
H.
Chen
,
G.
Xu
,
R.
Xue
,
S.
Wang
,
Y.
Li
, and
Y.
Li
,
Joule
3
,
191
204
(
2019
).
33.
S.
Fu
,
W.
Zhang
,
X.
Li
,
L.
Wan
,
Y.
Wu
,
L.
Chen
,
X.
Liu
, and
J.
Fang
,
ACS Energy Lett.
5
,
676
684
(
2020
).
34.
J.
Wang
,
L.
Chen
,
Z.
Qian
,
G.
Ren
,
J.
Wu
, and
H.
Zhang
,
J. Mater. Chem. A
8
,
25336
25344
(
2020
).
35.
D.
Wang
,
H.
Liu
,
G.
Wang
, and
F.
Meng
,
ACS Appl. Nano Mater.
7
,
16162
16171
(
2024
).
36.
M.-H.
Li
,
X.
Gong
,
S.
Wang
,
L.
Li
,
J.
Fu
,
J.
Wu
,
Z. A.
Tan
, and
J.-S.
Hu
,
Angew. Chem. Int. Ed.
63
,
e202318591
(
2024
).
37.
S.
Fu
,
J.
Wang
,
X.
Liu
,
H.
Yuan
,
Z.
Xu
,
Y.
Long
,
J.
Zhang
,
L.
Huang
,
Z.
Hu
, and
Y.
Zhu
,
Chem. Eng. J.
422
,
130572
(
2021
).
38.
Y.
Hu
,
L.
Cai
,
Z.
Xu
,
Z.
Wang
,
Y.
Zhou
,
G.
Sun
,
T.
Sun
,
Y.
Qi
,
S.
Zhang
, and
Y.
Tang
,
Inorg. Chem.
62
,
5408
5414
(
2023
).
39.
H.
Wang
,
Z.
Wang
,
X.
Tang
,
L.
Liu
,
H.
Zhang
,
X.
Yao
,
F.
Wang
,
S.
Wu
, and
X.
Liu
,
Chem. Eng. J.
453
,
139952
(
2023
).
40.
Q.
Chen
,
X.
Yang
,
Y.
Zhou
, and
B.
Song
,
New J. Chem.
45
,
15118
15130
(
2021
).
41.
L.
Chen
,
Z.
Yin
,
S.
Mei
,
X.
Xiao
, and
H.-Q.
Wang
,
J. Power Sources
499
,
229909
(
2021
).
42.
Q.
Wang
,
X.
Zheng
,
Y.
Deng
,
J.
Zhao
,
Z.
Chen
, and
J.
Huang
,
Joule
1
,
371
382
(
2017
).
43.
B.
Chen
,
P. N.
Rudd
,
S.
Yang
,
Y.
Yuan
, and
J.
Huang
,
Chem. Soc. Rev.
48
,
3842
3867
(
2019
).
44.
K.
Choi
,
J.
Lee
,
H. I.
Kim
,
C. W.
Park
,
G.-W.
Kim
,
H.
Choi
,
S.
Park
,
S. A.
Park
, and
T.
Park
,
Energy Environ. Sci.
11
,
3238
3247
(
2018
).
45.
X.
Zheng
,
Y.
Deng
,
B.
Chen
,
H.
Wei
,
X.
Xiao
,
Y.
Fang
,
Y.
Lin
,
Z.
Yu
,
Y.
Liu
,
Q.
Wang
, and
J.
Huang
,
Adv. Mater.
30
,
1803428
(
2018
).
46.
Y.
Shao
,
Z.
Xiao
,
C.
Bi
,
Y.
Yuan
, and
J.
Huang
,
Nat. Commun.
5
,
5784
(
2014
).
47.
Z.
Xu
,
X.
Liu
,
S.
Fu
,
J.
Wang
,
J.
Zhang
,
L.
Huang
,
Z.
Hu
, and
Y.
Zhu
,
Appl. Phys. Lett.
119
,
212101
(
2021
).
48.
P.
Murgatroyd
,
J. Phys. D: Appl. Phys.
3
,
151
(
1970
).
49.
Y.
Wang
,
J.
Li
,
X.
Yao
,
C.
Xie
,
Q.
Chen
,
W.
Liu
,
Z.
Gao
,
Y.
Fu
,
Q.
Liu
,
D.
He
, and
Y.
Li
,
ACS Appl. Mater. Interfaces
14
,
40930
40938
(
2022
).
50.
W.
Li
,
Y.
Li
,
Z.
Gao
,
G.
Wan
,
X.
Liu
,
Y.
Fu
,
Q.
Liu
,
D.
He
, and
J.
Li
,
J. Mater. Chem. C
12
,
1421
1429
(
2024
).
You do not currently have access to this content.