Quasi-one-dimensional (1D) van der Waals (vdW) materials present significant potential for progressive applications owing to their unique mechanical and electronic properties, which are highly responsive to external stimuli such as strain and pressure. In this work, we investigate the thermal transport, bonding characteristics, mechanical properties, and electronic structures of hafnium trisulfide (HfS3) and zirconium trisulfide (ZrS3) under varying strains using first-principles calculations combined with the Boltzmann transport equation. Our results reveal that the transverse acoustic phonon mode exhibits parabolic dispersion near the Γ point under tensile strain, consistent with the behavior observed in one-dimensional carbyne chains. For ZrS3, both compressive and tensile strains lead to a reduction in lattice thermal conductivity. In HfS3, thermal conductivity decreases monotonically under compressive strain from 0% to −4%. Thermal conductivity decreases under a 2% tensile strain and increases under a 4% tensile strain. As strain transitions from compressive to tensile, these 1D materials become increasingly anisotropic, with corresponding reductions in bandgaps. These findings offer new insights into strain-engineered thermal and electronic properties, positioning HfS3 and ZrS3 as promising candidates for future applications in electronics and thermoelectrics.

1.
N. V.
Morozova
,
I. V.
Korobeinikov
,
K. V.
Kurochka
,
A. N.
Titov
, and
S. V.
Ovsyannikov
, “
Thermoelectric properties of compressed titanium and zirconium trichalcogenides
,”
J. Phys. Chem. C
122
,
14362
(
2018
).
2.
Y.
Wu
,
Z.
Chen
,
P.
Nan
,
F.
Xiong
,
S.
Lin
,
X.
Zhang
,
Y.
Chen
,
L.
Chen
,
B.
Ge
, and
Y.
Pei
, “
Lattice strain advances thermoelectrics
,”
Joule
3
,
1276
(
2019
).
3.
V. M.
Pereira
and
A. H.
Castro Neto
, “
Strain engineering of graphene's electronic structure
,”
Phys. Rev. Lett
103
,
046801
(
2009
).
4.
D.
Zhang
,
K.
Zhang
,
Y.
Wang
,
Y.
Wang
, and
Y.
Yang
, “
Thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive self-powered strain sensor system
,”
Nano Energy
56
,
25
(
2019
).
5.
A.
Taheri
,
C.
Da Silva
, and
C. H.
Amon
, “
Effects of biaxial tensile strain on the first-principles-driven thermal conductivity of buckled arsenene and phosphorene
,”
Phys. Chem. Chem. Phys.
20
,
27611
(
2018
).
6.
A.
Castellanos-Gomez
,
R.
Roldán
,
E.
Cappelluti
,
M.
Buscema
,
F.
Guinea
,
H. S. J.
van der Zant
, and
G. A.
Steele
, “
Local strain engineering in atomically thin MoS2
,”
Nano Lett.
13
,
5361
(
2013
).
7.
G.
Li
,
K.
Yao
, and
G.
Gao
, “
Strain-induced enhancement of thermoelectric performance of TiS2 monolayer based on first-principles phonon and electron band structures
,”
Nanotechnology
29
,
015204
(
2018
).
8.
R.
D'Souza
,
S.
Mukherjee
, and
S.
Ahmad
, “
Strain induced large enhancement of thermoelectric figure-of-merit (ZT ∼ 2) in transition metal dichalcogenide monolayers ZrX2 (X = S, Se, Te)
,”
J. Appl. Phys.
126
,
214302
(
2019
).
9.
J. O.
Island
,
R.
Biele
,
M.
Barawi
,
J. M.
Clamagirand
,
J. R.
Ares
,
C.
Sánchez
,
H. S. J.
van der Zant
,
I. J.
Ferrer
,
R.
D'Agosta
, and
A.
Castellanos-Gomez
, “
Titanium trisulfide (TiS3): A 2D semiconductor with quasi-1D optical and electronic properties
,”
Sci. Rep.
6
,
22214
(
2016
).
10.
M. A.
Stolyarov
,
G.
Liu
,
M. A.
Bloodgood
,
E.
Aytan
,
C.
Jiang
,
R.
Samnakay
,
T. T.
Salguero
,
D. L.
Nika
,
S. L.
Rumyantsev
,
M. S.
Shur
,
K. N.
Bozhilov
, and
A. A.
Balandin
, “
Breakdown current density in h-BN-capped quasi-1D TaSe3 metallic nanowires: Prospects of interconnect applications
,”
Nanoscale
8
,
15774
(
2016
).
11.
A.
Geremew
,
M. A.
Bloodgood
,
E.
Aytan
,
B. W. K.
Woo
,
S. R.
Corber
,
G.
Liu
,
K.
Bozhilov
,
T. T.
Salguero
,
S.
Rumyantsev
,
M. P.
Rao
, and
A. A.
Balandin
, “
Current carrying capacity of quasi-1D ZrTe3 van der Waals nanoribbons
,”
IEEE Electron Device Lett.
39
,
735
(
2018
).
12.
K.
Wu
,
M.
Blei
,
B.
Chen
,
L.
Liu
,
H.
Cai
,
C.
Brayfield
,
D.
Wright
,
H.
Zhuang
, and
S.
Tongay
, “
Phase transition across anisotropic NbS3 and direct gap semiconductor TiS3 at nominal titanium alloying limit
,”
Adv. Mater.
32
,
2000018
(
2020
).
13.
M. A.
Valbuena
,
P.
Chudzinski
,
S.
Pons
,
S.
Conejeros
,
P.
Alemany
,
E.
Canadell
,
H.
Berger
,
E.
Frantzeskakis
,
J.
Avila
,
M. C.
Asensio
,
T.
Giamarchi
, and
M.
Grioni
, “
Polarization dependence of angle-resolved photoemission with submicron spatial resolution reveals emerging one-dimensionality of electrons in NbSe3
,”
Phys. Rev. B
99
,
075118
(
2019
).
14.
E.
Guilmeau
,
D.
Berthebaud
,
P. R. N.
Misse
,
S.
Hébert
,
O. I.
Lebedev
,
D.
Chateigner
,
C.
Martin
, and
A.
Maignan
, “
ZrSe3-type variant of TiS3: Structure and thermoelectric properties
,”
Chem. Mater.
26
,
5585
(
2014
).
15.
K.
Wu
,
E.
Torun
,
H.
Sahin
,
B.
Chen
,
X.
Fan
,
A.
Pant
,
D.
Parsons Wright
,
T.
Aoki
,
F. M.
Peeters
,
E.
Soignard
, and
S.
Tongay
, “
Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3
,”
Nat. Commun.
7
,
12952
(
2016
).
16.
M.
Li
,
J.
Dai
, and
X. C.
Zeng
, “
Tuning the electronic properties of transition-metal trichalcogenides via tensile strain
,”
Nanoscale
7
,
15385
(
2015
).
17.
J. O.
Island
,
M.
Buscema
,
M.
Barawi
,
J. M.
Clamagirand
,
J. R.
Ares
,
C.
Sánchez
,
I. J.
Ferrer
,
G. A.
Steele
,
H. S. J.
van der Zant
, and
A.
Castellanos-Gomez
, “
Ultrahigh photoresponse of few-layer TiS3 nanoribbon transistors
,”
Adv. Opt. Mater.
2
,
641
(
2014
).
18.
Q.
Zhao
,
Y.
Guo
,
Y.
Zhou
,
Z.
Yao
,
Z.
Ren
,
J.
Bai
, and
X.
Xu
, “
Band alignments and heterostructures of monolayer transition metal trichalcogenides MX3 (M = Zr, Hf; X = S, Se) and dichalcogenides MX2 (M = Tc, Re; X=S, Se) for solar applications
,”
Nanoscale
10
,
3547
(
2018
).
19.
Y.
Jin
,
X.
Li
, and
J.
Yang
, “
Single layer of MX3 (M = Ti, Zr; X = S, Se, Te): a new platform for nano-electronics and optics
,”
Phys. Chem. Chem. Phys.
17
,
18665
(
2015
).
20.
K.
Osada
,
S.
Bae
,
M.
Tanaka
,
H.
Raebiger
,
K.
Shudo
, and
T.
Suzuki
, “
Phonon properties of few-layer crystals of quasi-one-dimensional ZrS3 and ZrSe3
,”
J. Phys. Chem. C
120
,
4653
(
2016
).
21.
Q.
Zhao
,
Y.
Ren
,
L.
Li
,
C.
He
,
J.
Che
,
R.
Jia
,
Y.
Xu
,
L.
Zhu
, and
X.
Xu
, “
Flexibility and anisotropy of MX3 (M = Zr, Hf; X = S, Se): New semiconductors with high photovoltaic performance
,”
J. Appl. Phys
134
,
124302
(
2023
).
22.
L.
Liu
,
C.
Zhu
,
Z. Y.
Liu
,
H.
Deng
,
X. B.
Zhou
,
Y.
Li
,
Y.
Sun
,
X.
Huang
,
S.
Li
,
X.
Du
,
Z.
Wang
,
T.
Guan
,
H.
Mao
,
Y.
Sui
,
R.
Wu
,
J.-X.
Yin
,
J. G.
Cheng
, and
S. H.
Pan
, “
Thermal dynamics of charge density wave pinning in ZrTe3
,”
Phys. Rev. Lett.
126
,
256401
(
2021
).
23.
Y.
Liu
,
Z.
Hu
,
X.
Tong
,
D.
Leshchev
,
X.
Zhu
,
H.
Lei
,
E.
Stavitski
,
K.
Attenkofer
, and
C.
Petrovic
, “
Thermal transport and mixed valence in ZrTe3 doped with Hf and Se
,”
Appl. Phys. Lett.
120
,
022601
(
2022
).
24.
C.
Liu
,
P.
Lu
,
D.
Li
,
Y.
Zhao
, and
M.
Hao
, “
Non-monotonic thickness dependent and anisotropic in-plane thermal transport in layered titanium trisulphide
,”
Mater. Today Nano
17
,
100165
(
2022
).
25.
A. A.
Balandin
,
F.
Kargar
,
T. T.
Salguero
, and
R. K.
Lake
, “
One-dimensional van der Waals quantum materials
,”
Mater. Today
55
,
74
(
2022
).
26.
T.
Wang
,
Y.
Zhu
,
Z.
Mao
, and
Y.-Q.
Xu
, “
Tunneling effects in crossed Ta2Pt3Se8–Ta2Pd3Se8 nanowire junctions: Implications for anisotropic photodetectors
,”
ACS Appl. Nano Mater.
4
,
1817
(
2021
).
27.
G.
Cheon
,
K.-A. N.
Duerloo
,
A. D.
Sendek
,
C.
Porter
,
Y.
Chen
, and
E. J.
Reed
, “
Data mining for new two- and one-dimensional weakly bonded solids and lattice-commensurate heterostructures
,”
Nano Lett.
17
(
3
),
1915
(
2017
).
28.
B.
Yue
,
W.
Zhong
,
W.
Deng
,
T.
Wen
,
Y.
Wang
,
Y.
Yin
,
P.
Shan
,
J.-T.
Wang
,
X.
Yu
, and
F.
Hong
, “
Insulator-to-superconductor transition in quasi-one-dimensional HfS3 under pressure
,”
J. Am. Chem. Soc.
145
,
1301
(
2023
).
29.
Y.
Saeed
,
A.
Kachmar
, and
M. A.
Carignano
, “
First-principles study of the transport properties in bulk and monolayer MX3 (M = Ti, Zr, Hf and X = S, Se) compounds
,”
J. Phys. Chem. C
121
,
1399
(
2017
).
30.
F.
Chen
,
G.
Liu
,
Z.
Xiao
,
H.
Zhou
,
L.
Fei
,
S.
Wan
,
X.
Liao
,
J.
Yuan
, and
Y.
Zhou
, “
Quasi-one-dimensional ZrS3 nanoflakes for broadband and polarized photodetection with high tuning flexibility
,”
ACS Appl. Mater. Interfaces
15
,
16999
(
2023
).
31.
C.
Wang
,
C.
Zheng
, and
G.
Gao
, “
Bulk and monolayer ZrS3 as promising anisotropic thermoelectric materials: A comparative study
,”
J. Phys. Chem. C
124
,
6536
(
2020
).
32.
F.
Saiz
,
J.
Carrete
, and
R.
Rurali
, “
Optimisation of the thermoelectric efficiency of zirconium trisulphide monolayers through unixial and biaxial strain
,”
Nanoscale Adv.
2
,
5352
(
2020
).
33.
R.
Saito
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Physical properties of carbon nanotubes
(
Imperial College Press
,
1998
), p. 272.
34.
J.
Zimmermann
,
P.
Pavone
, and
G.
Cuniberti
, “
Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes: Minimal force-constant model
,”
Phys. Rev. B
78
,
045410
(
2008
).
35.
J.
Carrete
,
W.
Li
,
L.
Lindsay
,
D. A.
Broido
,
L. J.
Gallego
, and
N.
Mingo
, “
Physically founded phonon dispersions of few-layer materials and the case of borophene
,”
Mater. Res. Lett.
4
,
204
(
2016
).
36.
A. C.
Dias
,
H.
Bragança
,
J. P. A.
de Mendonça
, and
J. L. F.
Da Silva
, “
Excitonic effects on two-dimensional transition-metal dichalcogenide monolayers: impact on solar cell efficiency
,”
ACS Appl. Energy Mater.
4
,
3265
(
2021
).
37.
D.
Han
,
H.
Sun
,
W.
Ding
,
Y.
Chen
,
X.
Wang
, and
L.
Cheng
, “
Effect of biaxial strain on thermal transport in WS2 monolayer from first principles calculations
,”
Physica E
124
,
114312
(
2020
).
38.
X.
Li
,
K.
Maute
,
M. L.
Dunn
, and
R.
Yang
, “
Strain effects on the thermal conductivity of nanostructures
,”
Phys. Rev. B
81
,
245318
(
2010
).
39.
L.
Lindsay
and
D. A.
Broido
, “
Three-phonon phase space and lattice thermal conductivity in semiconductors
,”
J. Phys.: Condens. Matter
20
,
165209
(
2008
).
40.
A.
Kundu
,
N.
Mingo
,
D. A.
Broido
, and
D. A.
Stewart
, “
Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys
,”
Phys. Rev. B
84
,
125426
(
2011
).
41.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
(
1993
).
42.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
,
14251
(
1994
).
43.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
44.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
45.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
46.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys
118
,
8207
(
2003
).
47.
A.
Togo
,
F.
Oba
, and
I.
Tanaka
, “
First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures
,”
Phys. Rev. B
78
,
134106
(
2008
).
48.
B.
Peng
,
Z.
Ning
,
H.
Zhang
,
H.
Shao
,
Y.
Xu
,
G.
Ni
, and
H.
Zhu
, “
Beyond perturbation: Role of vacancy-induced localized phonon states in thermal transport of monolayer MoS2
,”
J. Phys. Chem. C
120
,
29324
(
2016
).
49.
W.
Li
,
J.
Carrete
,
N. A.
Katcho
, and
N.
Mingo
, “
ShengBTE: A solver of the Boltzmann transport equation for phonons
,”
Comput. Phys. Commun.
185
,
1747
(
2014
).
50.
F.
Mouhat
and
F.-X.
Coudert
, “
Necessary and sufficient elastic stability conditions in various crystal systems
,”
Phys. Rev. B
90
,
224104
(
2014
).
51.
R.
Hill
, “
The elastic behaviour of a crystalline aggregate
,”
Proc. Phys. Soc. A
65
,
349
(
1952
).
You do not currently have access to this content.