Recently, nonreciprocal structures that violate Kirchhoff's law of thermal radiation have attracted considerable interest for their potential in solar energy harvesting applications. However, previous research has primarily focused on mid-infrared wavelengths rather than on the main solar wavelength range where sunlight intensity is concentrated. In this work, we theoretically demonstrate a nonreciprocal structure operating within the main solar spectrum, specifically tailored to meet the requirements of solar cell applications.
REFERENCES
1.
G.
Kirchhoff
, “
On the relation between the radiating and absorbing powers of different bodies for light and heat
,” London, Edinburg, Dublin, Philos. Mag. J. Sci.
20
, 1
–21
(1860
).2.
A. D.
Vos
, “
Detailed balance limit of the efficiency of tandem solar cells
,” J. Phys. D
13
, 839
(1980
).3.
A.
De Vos
and
H.
Pauwels
, “
On the thermodynamic limit of photovoltaic energy conversion
,” Appl. Phys.
25
, 119
–125
(1981
).4.
H.
Pauwels
and
A.
De Vos
, “
Determination of the maximum efficiency solar cell structure
,” Solid-State Electron.
24
, 835
–843
(1981
).5.
P. T.
Landsberg
and
G.
Tonge
, “
Thermodynamic energy conversion efficiencies
,” J. Appl. Phys.
51
, R1
–R20
(1980
).6.
H.
Ries
, “
Complete and reversible absorption of radiation
,” Appl. Phys. B
32
, 153
–156
(1983
).7.
M.
Green
, Third Generation Photovoltaics: Advanced Solar Energy Conversion, Springer Series in Photonics
(
Springer-Verlag
,
Berlin, Heidelberg
, 2003
).8.
M. A.
Green
, “
Time-asymmetric photovoltaics
,” Nano Lett.
12
, 5985
–5988
(2012
).9.
L.
Zhu
and
S.
Fan
, “
Near-complete violation of detailed balance in thermal radiation
,” Phys. Rev. B
90
, 220301
(2014
).10.
Y.
Park
,
B.
Zhao
, and
S.
Fan
, “
Reaching the ultimate efficiency of solar energy harvesting with a nonreciprocal multijunction solar cell
,” Nano Lett.
22
, 448
–452
(2022
).11.
D.
Jalas
,
A.
Petrov
,
M.
Eich
,
W.
Freude
,
S.
Fan
,
Z.
Yu
,
R.
Baets
,
M.
Popović
,
A.
Melloni
,
J. D.
Joannopoulos
,
M.
Vanwolleghem
,
C. R.
Doerr
, and
H.
Renner
, “
What is – and what is not – an optical isolator
,” Nat. Photonics
7
, 579
–582
(2013
).12.
V. S.
Asadchy
,
M. S.
Mirmoosa
,
A.
Díaz-Rubio
,
S.
Fan
, and
S. A.
Tretyakov
, “
Tutorial on electromagnetic nonreciprocity and its origins
,” Proc. IEEE
108
, 1684
–1727
(2020
).13.
S.
Yang
,
M.
Liu
,
C.
Zhao
,
S.
Fan
, and
C.-W.
Qiu
, “
Nonreciprocal thermal photonics
,” Nat. Photonics
18
, 412
–424
(2024
).14.
B.
Zhao
,
Y.
Shi
,
J.
Wang
,
Z.
Zhao
,
N.
Zhao
, and
S.
Fan
, “
Near-complete violation of Kirchhoff's law of thermal radiation with a 0.3T magnetic field
,” Opt. Lett.
44
, 4203
–4206
(2019
).15.
B.
Zhao
,
C.
Guo
,
C. A. C.
Garcia
,
P.
Narang
, and
S.
Fan
, “
Axion-field-enabled nonreciprocal thermal radiation in Weyl semimetals
,” Nano Lett.
20
, 1923
–1927
(2020
).16.
S.
Pajovic
,
Y.
Tsurimaki
,
X.
Qian
, and
G.
Chen
, “
Intrinsic nonreciprocal reflection and violation of Kirchhoff's law of radiation in planar type-I magnetic Weyl semimetal surfaces
,” Phys. Rev. B
102
, 165417
(2020
).17.
Y.
Tsurimaki
,
X.
Qian
,
S.
Pajovic
,
F.
Han
,
M.
Li
, and
G.
Chen
, “
Large nonreciprocal absorption and emission of radiation in type-I Weyl semimetals with time reversal symmetry breaking
,” Phys. Rev. B
101
, 165426
(2020
).18.
B.
Zhao
,
J.
Wang
,
Z.
Zhao
,
C.
Guo
,
Z.
Yu
, and
S.
Fan
, “
Nonreciprocal thermal emitters using metasurfaces with multiple diffraction channels
,” Phys. Rev. Appl.
16
, 064001
(2021
).19.
Z.
Zhang
and
L.
Zhu
, “
Broadband nonreciprocal thermal emission
,” Phys. Rev. Appl.
19
, 014013
(2023
).20.
C.
Du
and
B.
Zhao
, “
Controlling the ENZ profile for broadband nonreciprocal thermal emitters with high contrast between emissivity and absorptivity
,” in Proceedings of the 10th International Symposium on Radiative Transfer
(
Begel House Inc
., 2023
).21.
J.
Wu
,
Y.
Sun
,
B.
Wu
,
Z.
Wang
, and
X.
Wu
, “
Extremely wide-angle nonreciprocal thermal emitters based on Weyl semimetals with dielectric grating structure
,” Case Stud. Therm. Eng.
40
, 102566
(2022
).22.
Y.
Park
,
V. S.
Asadchy
,
B.
Zhao
,
C.
Guo
,
J.
Wang
, and
S.
Fan
, “
Violating Kirchhoff's law of thermal radiation in semitransparent structures
,” ACS Photonics
8
, 2417
–2424
(2021
).23.
M. F.
Picardi
,
V. I.
Moerbeek
,
M.
Pascale
, and
G. T.
Papadakis
, “
Nonreciprocity in transmission mode with planar structures for arbitrarily polarized light [Invited]
,” Opt. Mater. Express
14
, 2201
–2209
(2024
).24.
K. J.
Shayegan
,
S.
Biswas
,
B.
Zhao
,
S.
Fan
, and
H. A.
Atwater
, “
Direct observation of the violation of Kirchhoff's law of thermal radiation
,” Nat. Photonics
17
, 891
–896
(2023
).25.
K. J.
Shayegan
,
B.
Zhao
,
Y.
Kim
,
S.
Fan
, and
H. A.
Atwater
, “
Nonreciprocal infrared absorption via resonant magneto-optical coupling to InAs
,” Sci. Adv.
8
, eabm4308
(2022
).26.
M.
Liu
,
S.
Xia
,
W.
Wan
,
J.
Qin
,
H.
Li
,
C.
Zhao
,
L.
Bi
, and
C.-W.
Qiu
, “
Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films
,” Nat. Mater.
22
, 1196
–1202
(2023
).27.
S.
Pajovic
,
Y.
Tsurimaki
,
X.
Qian
,
G.
Chen
, and
S. V.
Boriskina
, “
Nonreciprocal reflection of mid-infrared light by highly doped InAs at low magnetic fields
” arXiv:2410.06596 (2024
).28.
M. Q.
Liu
and
C. Y.
Zhao
, “
Near-infrared nonreciprocal thermal emitters induced by asymmetric embedded eigenstates
,” Int. J. Heat Mass Transfer
186
, 122435
(2022
).29.
D.
Vojna
,
O.
Slezák
,
A.
Lucianetti
, and
T.
Mocek
, “
Verdet constant of magneto-active materials developed for high-power faraday devices
,” Appl. Sci.
9
, 3160
(2019
).30.
E. G.
Víllora
,
P.
Molina
,
M.
Nakamura
,
K.
Shimamura
,
T.
Hatanaka
,
A.
Funaki
, and
K.
Naoe
, “
Faraday rotator properties of {Tb3}[Sc1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators
,” Appl. Phys. Lett.
99
, 011111
(2011
).31.
M. Y. A.
Raja
,
D.
Allen
, and
W.
Sisk
, “
Room–temperature inverse Faraday effect in terbium gallium garnet
,” Appl. Phys. Lett.
67
, 2123
–2125
(1995
).32.
F.
Guo
,
J.
Ru
,
H.
Li
,
N.
Zhuang
,
B.
Zhao
, and
J.
Chen
, “
Growth and magneto-optical properties of LiTb(MoO4)2 crystal
,” Appl. Phys. B
94
, 437
–441
(2009
).33.
O.
Slezák
,
R.
Yasuhara
,
A.
Lucianetti
, and
T.
Mocek
, “
Temperature-wavelength dependence of terbium gallium garnet ceramics Verdet constant
,” Opt. Mater. Express
6
, 3683
–3691
(2016
).34.
S.
Fan
and
J. D.
Joannopoulos
, “
Analysis of guided resonances in photonic crystal slabs
,” Phys. Rev. B
65
, 235112
(2002
).35.
K.
Papatryfonos
,
T.
Angelova
,
A.
Brimont
,
B.
Reid
,
S.
Guldin
,
P. R.
Smith
,
M.
Tang
,
K.
Li
,
A. J.
Seeds
,
H.
Liu
, and
D. R.
Selviah
, “
Refractive indices of MBE-grown AlxGa(1-x)As ternary alloys in the transparent wavelength region
,” AIP Adv.
11
, 025327
(2021
).36.
L.
Gao
,
F.
Lemarchand
, and
M.
Lequime
, “
Refractive index determination of SiO2 layer in the UV/Vis/NIR range: Spectrophotometric reverse engineering on single and bi-layer designs
,” J. Eur. Opt. Soc.: Rapid. Publ.
8
, 13010
(2013
).37.
S. S.
Wang
and
R.
Magnusson
, “
Theory and applications of guided-mode resonance filters
,” Appl. Opt.
32
, 2606
–2613
(1993
).38.
M. G.
Moharam
and
T. K.
Gaylord
, “
Rigorous coupled-wave analysis of planar-grating diffraction
,” J. Opt. Soc. Am.
71
, 811
–818
(1981
).39.
M. G.
Moharam
,
E. B.
Grann
,
D. A.
Pommet
, and
T. K.
Gaylord
, “
Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings
,” J. Opt. Soc. Am. A
12
, 1068
–1076
(1995
).40.
P.
Lalanne
and
G. M.
Morris
, “
Highly improved convergence of the coupled-wave method for TM polarization
,” J. Opt. Soc. Am. A
13
, 779
–784
(1996
).41.
G.
Granet
and
B.
Guizal
, “
Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization
,” J. Opt. Soc. Am. A
13
, 1019
–1023
(1996
).42.
L.
Li
, “
Use of Fourier series in the analysis of discontinuous periodic structures
,” J. Opt. Soc. Am. A
13
, 1870
–1876
(1996
).43.
K.
Rokushima
and
J.
Yamakita
, “
Analysis of anisotropic dielectric gratings
,” J. Opt. Soc. Am.
73
, 901
–908
(1983
).44.
L.
Li
, “
Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials
,” J. Mod. Optic.
45
, 1313
–1334
(1998
).45.
L.
Li
, “
Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors
,” J. Opt. A
5
, 345
(2003
).46.
B.
Caballero
,
A.
García-Martín
, and
J. C.
Cuevas
, “
Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems
,” Phys. Rev. B
85
, 245103
(2012
).47.
C.
Guo
,
B.
Zhao
, and
S.
Fan
, “
Adjoint Kirchhoff's law and general symmetry implications for all thermal emitters
,” Phys. Rev. X
12
, 021023
(2022
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.