To address the issue of low power output of betavoltaic cells in practical applications, a 63Ni-powered betavoltaic rechargeable Zn-ion battery (BRZiB) is presented in this paper for simultaneously harvesting, converting, and storing beta-radioactive energy within one device. Experimentally, a patterned ZnO microrod array nanostructure was prepared using hydrothermal and lithography methods, in which a 63Ni beta source was deposited by chemical plating to form a 63Ni@ZnO structure for betavoltaic power generation. A carbon-coated VO2 nanocomposite (C@VO2), used as the intercalation host for Zn ions, was coated on the betavoltaic structure for fabricating the hybrid cathode of BRZiB. Without using any external power source, the 63Ni-powered BRZiB demonstrated a voltage rise of 0.3 V in 82 h, which was calculated to have an energy conversion efficiency of 5.1% and an energy density of 128 mWh/g over a half-life of 63Ni (∼100 years). The experimental results verify the effectiveness of multi-energy synergistic conversion in the electrochemical betavoltaic system.

1.
A.
Krasnov
and
S. A.
Legotin
, “
Advances in the development of betavoltaic power sources (A review)
,”
Instrum. Exp. Tech.
63
,
437
452
(
2020
).
2.
L. C.
Olsen
,
P.
Cabauy
, and
B. J.
Elkind
, “
Betavoltaic power sources
,”
Phys. Today
65
(
12
),
35
38
(
2012
).
3.
M. G.
Spencer
and
T.
Alam
, “
High power direct energy conversion by nuclear batteries
,”
Appl. Phys. Rev.
6
,
031305
(
2019
).
4.
Z. Y.
Chen
,
J. B.
Lu
,
R. Z.
Zheng
,
X. Y.
Li
,
Y.
Wang
,
X.
Zhang
,
Y. H.
Zhang
,
Q. M.
Cui
,
X. X.
Yuan
,
Y.
Zhao
,
H. L.
Li
, and
Y. M.
Liu
, “
Theoretical prediction of time-related performance of GaN-based p–n junction betavoltaic battery
,”
Appl. Phys. Lett.
122
,
173902
(
2023
).
5.
X. Y.
Li
,
J. B.
Lu
,
Y. M.
Liu
,
X.
Xu
,
R.
He
, and
R. Z.
Zheng
, “
Exploratory study of betavoltaic battery using ZnO as the energy converting material
,”
Nucl. Sci. Tech.
30
,
60
(
2019
).
6.
C.
Zhao
,
F. Y.
Liao
,
C. G.
Chen
, and
Y. Y.
Zhao
, “
Recycling backscattered β rays in planar betavoltaic batteries using the double-sided structure
,”
Appl. Phys. Lett.
122
,
103902
(
2023
).
7.
H. S.
Kim
,
J. H.
Lee
,
S. H.
Lee
,
N. S.
Powar
,
M. B.
Naseem
,
C. H.
Kim
,
H. R.
Zhou
,
H. K.
Kim
,
W. A.
Goddard
, and
S. I.
In
, “
Multiple-year battery based on highly efficient and stable dual-site radioactive isotope dye-sensitized betavoltaic cell
,”
J. Power Sources
606
,
234427
(
2024
).
8.
M. B.
Naseem
,
H. S.
Kim
,
J. H.
Lee
,
C. H.
Kim
, and
S. I.
In
, “
Betavoltaic nuclear battery: A review of recent progress and challenges as an alternative energy source
,”
J. Phys. Chem. C
127
,
7565
7579
(
2023
).
9.
X. M.
Zhang
,
F. B.
Ji
,
G.
Wang
,
J.
Li
,
M. J.
Jin
,
J. Y.
Zhou
,
E. Q.
Xie
, and
X. J.
Pan
, “
360° detection of linear ZnO@CFs photoelectrochemical-type ultraviolet photodetector
,”
Appl. Phys. Lett.
123
,
031105
(
2023
).
10.
X. H.
Zhao
,
J. Y.
Dai
,
J. X.
Dong
,
Y.
Tao
,
J. H.
Chen
,
X. X.
Song
,
Z. D.
Fu
,
W. B.
Sun
, and
Z. X.
Yan
, “
Lead-free perovskite/ZnO heterostructure for flexible visible-blind ultraviolet photodetection
,”
Appl. Phys. Lett.
124
,
253301
(
2024
).
11.
D.
Schmidt
,
M. D.
Hager
, and
U. S.
Schuber
, “
Photo-rechargeable electric energy storage systems
,”
Adv. Energy Mater.
6
,
1500369
(
2016
).
12.
H. L.
Sun
,
X. D.
Xiang
,
X. N.
Wang
,
H. S.
Tsai
, and
W.
Feng
, “
Advanced photo-rechargeable lithium- and zinc-ion batteries: Progress and prospect
,”
J. Power Sources
598
,
234204
(
2024
).
13.
J.
Wang
,
W.
Yan
, and
B.
Liu
, “
Photo-rechargeable lithium-ion battery: Progress and prospects
,”
Sci. Bull.
67
,
1087
1089
(
2022
).
14.
W.
Guo
,
X.
Xue
,
S.
Wang
,
C.
Lin
, and
Z. L.
Wang
, “
An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays
,”
Nano Lett.
12
,
2520
2523
(
2012
).
15.
Z.
Ding
,
T. X.
Jiang
,
W. D.
Zhao
,
Z. X.
Luo
,
H. S.
San
,
S. J.
Li
,
X.
Li
, and
L. F.
Zhang
, “
Photo-rechargeable zinc-ion battery using highly ordered and vertically oriented C@VO2/ZnO microrod arrays
,”
Energy Storage Mater.
71
,
103646
(
2024
).
16.
B. M.
Kim
,
M. H.
Lee
,
V. S.
Dilimon
,
J. S.
Kim
,
J. S.
Nam
,
Y. G.
Cho
,
H. K.
Noh
,
D. H.
Roh
,
T. H.
Kwon
, and
H. K.
Song
, “
Indoor-light-energy-harvesting dye-sensitized photo-rechargeable battery
,”
Energ. Environ. Sci.
13
,
1473
1480
(
2020
).
17.
Y. H.
Liu
,
J.
Qu
,
W.
Chang
,
C. Y.
Yang
,
H. J.
Liu
,
X. Z.
Zhai
,
Y.
Kang
,
Y. G.
Guo
, and
Z. Z.
Yu
, “
A photo-assisted reversible lithium-sulfur battery
,”
Energy Storage Mater.
50
,
334
343
(
2022
).
18.
J.
Wang
,
Y.
Wang
,
C. F.
Zhu
, and
B.
Liu
, “
Photoinduced rechargeable lithium-ion battery
,”
ACS Appl. Mater. Interfaces
14
,
4071
4078
(
2022
).
19.
B. D.
Boruah
,
B.
Wen
,
S.
Nagane
,
X.
Zhang
,
S. D.
Stranks
,
A.
Boies
, and
M.
De Volder
, “
Photo-rechargeable zinc-ion capacitors using V2O5-activated carbon electrodes
,”
ACS Energy Lett.
5
,
3132
3135
(
2020
).
20.
B.
Kaur
,
D.
Maity
,
P. Y.
Naidu
, and
M.
Deepa
, “
Photo-rechargeable battery with an energetically aligned beetroot Dye/Cl-graphene quantum dots/MoO3 nanorods composite
,”
Chem. Eng. J.
468
,
143835
(
2023
).
21.
H. M.
Liu
,
P. K.
Wu
,
R. H.
Wang
,
H. J.
Meng
,
Y. Q.
Zhang
,
W. Z.
Bao
, and
J. F.
Li
, “
A photo-rechargeable aqueous zinc-tellurium battery enabled by the janus-jointed perovskite/Te photocathode
,”
ACS Nano
17
,
1560
1569
(
2023
).
22.
R. R.
Zheng
,
Z.
Ding
,
W. Y.
Wang
,
N.
Wang
,
Z.
Wang
,
T. X.
Jiang
,
X.
Li
,
S. C.
Liu
,
L. F.
Zhang
, and
H. S.
San
, “
Electrochemical enhanced betavoltaic cells based on ZrO2@TiO2 nanorod arrays with type-I band alignment
,”
Appl. Surf. Sci.
611
,
155757
(
2023
).
23.
Z.
Ding
,
R. R.
Zheng
,
W. D.
Zhao
,
T. X.
Jiang
,
X.
Li
,
H. S.
San
,
X.
Li
,
L. F.
Zhang
, and
N.
Wang
, “
A stable and efficient quasi-solid-state photo/betavoltaic-powered electrochemical cell based on 3-dimensional CdS/ZnO heterostructure
,”
Chem. Eng. J.
478
,
147256
(
2023
).
24.
H. J.
He
,
Y. C.
Han
,
X. Y.
Wang
,
Y. M.
Liu
,
J. C.
Zhang
,
L.
Ren
, and
M. J.
Zheng
, “
Enhancing betavoltaic nuclear battery performance with 3D P+PNN+ multi-groove structure via carrier evolution
,”
Nucl. Sci. Tech.
34
,
181
(
2023
).
25.
Z.
Ding
,
T.
Jiang
,
R.
Zheng
,
N.
Wang
,
L.
Zhang
,
S.
Liu
,
X.
Li
, and
H.
San
, “
Quantitative modeling, optimization, and verification of Ni-63-powered betavoltaic cells based on three-dimensional ZnO nanorod arrays
,”
Nucl. Sci. Tech.
33
,
144
(
2022
).
26.
K.
Li
,
C. C.
Yan
,
J. R.
Wang
,
K.
Zhu
,
J. J.
Guo
,
Y. G.
Zhang
,
G. Z.
Shi
,
Y. C.
Yin
,
L. W.
Cheng
,
L.
Sun
,
Y. M.
Wang
,
H. L.
Zhang
,
Y.
Sun
,
J. Y.
Yuan
,
W. L.
Ma
,
G. X.
Ji
,
Z. F.
Chai
,
Y. X.
Wang
,
X. P.
Ouyang
, and
S. O.
Wang
, “
Micronuclear battery based on a coalescent energy transducer
,”
Nature
633
,
811
815
(
2024
).
27.
T.
Wacharasindhu
,
B. R.
Nullmeyer
,
J. W.
Kwon
,
J. D.
Robertson
, and
A. Y.
Garnov
, “
Mechanisms leading to losses in conventional betavoltaics and evolution: Utilizing composite semiconductor with infused radioisotope for efficiency improvement
,”
J. Microelectromech. Syst.
23
,
56
(
2014
).
28.
L. E.
Blanc
,
D.
Kundu
, and
L. F.
Nazar
, “
Scientific challenges for the implementation of Zn-ion batteries
,”
Joule
4
,
771
799
(
2020
).
29.
J. S.
Park
,
J. H.
Jo
,
Y.
Aniskevich
,
A.
Bakavets
,
G.
Ragoisha
,
E.
Streltsov
,
J.
Kim
, and
S. T.
Myung
, “
Open-structured vanadium dioxide as an intercalation host for Zn ions: Investigation by first-principles calculation and experiments
,”
Chem. Mater.
30
,
6777
6787
(
2018
).
30.
M.
Yang
,
D.
Ma
,
H.
Mi
,
X.
Yang
,
Y.
Wang
,
L.
Sun
, and
P.
Zhang
, “
A unique morphology and interface dual-engineering strategy enables the holey C@VO2 cathode with enhanced storage kinetics for aqueous Zn-ion batteries
,”
J. Mater. Chem. A
9
,
8792
8804
(
2021
).
31.
D. D.
Jia
,
K.
Zheng
,
M.
Song
,
H.
Tan
,
A. T.
Zhang
,
L. H.
Wang
,
L. J.
Yue
,
D.
Li
,
C. W.
Li
, and
J. Q.
Liu
, “
VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries
,”
Nano Res.
13
,
215
224
(
2020
).
32.
G.
Faggio
,
V.
Modafferi
,
G.
Panzera
,
D.
Alfieri
, and
S.
Santangelo
, “
Micro-Raman and photoluminescence analysis of composite vanadium oxide/poly-vinyl acetate fibres synthesised by electro-spinning
,”
J. Raman Spectrosc.
43
,
761
768
(
2012
).
33.
R.
Baddour-Hadjean
,
A.
Marzouk
, and
J. P.
Pereira-Ramos
, “
Structural modifications of LixV2O5 in a composite cathode (0 ≤ x < 2) investigated by Raman microspectrometry
,”
J. Raman Spectrosc.
43
,
153
160
(
2012
).
34.
Y. F.
Zhang
,
J. Q.
Zheng
,
T.
Hu
,
F. P.
Tian
, and
C. G.
Meng
, “
Synthesis and supercapacitor electrode of VO2(B)/core-shell composites with a pseudocapacitance in aqueous solution
,”
Appl. Surf. Sci.
371
,
189
195
(
2016
).
35.
F.
Wan
and
Z.
Niu
, “
Design strategies for vanadium-based aqueous zinc-ion batteries
,”
Angew. Chem., Int. Ed.
58
,
16358
16367
(
2019
).
You do not currently have access to this content.