Experimental searches for axions or dark photons that couple to the standard model photon require photosensors with low noise, broadband sensitivity, and near zero backgrounds. Here, we introduce an experimental architecture, in which a small photon sensor, in our case a transition edge sensor (TES) with a photon energy resolution σγ=368.4±0.4 meV, is colocated on the same substrate as a large high sensitivity athermal phonon sensor (APS) with a phonon energy resolution σphonon=701±2 meV. We show that single 3.061 eV photons absorbed in the photon-sensing TES deposit 35% of their energy in the electronic system of the TES, while 26% of the photon energy leaks out of the photon-sensing TES during the downconversion process and becomes absorbed by the APS. Backgrounds, which we associate with the broadly observed “low energy excess” (LEE), are observed to be largely coupled to either the TES (“singles” LEE), or phonon system, (“shared” LEE). At high energies, these backgrounds can be efficiently discriminated from TES photon absorption events, while at low energies, their misidentification as photon events is well modeled. With significant sensitivity improvements to both the TES and APS, this coincidence technique could be used to suppress backgrounds in bosonic dark matter searches down to energies near the superconducting bandgap of the sensor.

1.
D.
Horns
,
J.
Jaeckel
,
A.
Lindner
,
A.
Lobanov
,
J.
Redondo
, and
A.
Ringwald
, “
Searching for wispy cold dark matter with a dish antenna
,”
J. Cosmol. Astropart. Phys.
2013
,
16
.
2.
F.
Bajjali
,
S.
Dornbusch
,
M.
Ekmedžić
,
D.
Horns
,
C.
Kasemann
,
A.
Lobanov
,
A.
Mkrtchyan
,
L. H.
Nguyen
,
M.
Tluczykont
,
G.
Tuccari
,
J.
Ulrichs
,
G.
Wieching
, and
A.
Zensus
, “
First results from BRASS-p broadband searches for hidden photon dark matter
,”
J. Cosmol. Astropart. Phys.
2023
,
77
.
3.
J.
Liu
,
K.
Dona
,
G.
Hoshino
,
S.
Knirck
,
N.
Kurinsky
,
M.
Malaker
,
D. W.
Miller
,
A.
Sonnenschein
,
M. H.
Awida
,
P. S.
Barry
,
K. K.
Berggren
,
D.
Bowring
,
G.
Carosi
,
C.
Chang
,
A.
Chou
,
R.
Khatiwada
,
S.
Lewis
,
J.
Li
,
S. W.
Nam
,
O.
Noroozian
, and
T. X.
Zhou
, “
Broadband solenoidal haloscope for terahertz axion detection
,”
Phys. Rev. Lett.
128
,
131801
(
2022
).
4.
K.
Ehret
,
M.
Frede
,
S.
Ghazaryan
,
M.
Hildebrandt
,
E.-A.
Knabbe
,
D.
Kracht
,
A.
Lindner
,
J.
List
,
T.
Meier
,
N.
Meyer
,
D.
Notz
,
J.
Redondo
,
A.
Ringwald
,
G.
Wiedemann
, and
B.
Willke
, “
New ALPS results on hidden-sector lightweights
,”
Phys. Lett. B
689
,
149
155
(
2010
).
5.
J.
Chiles
,
I.
Charaev
,
R.
Lasenby
,
M.
Baryakhtar
,
J.
Huang
,
A.
Roshko
,
G.
Burton
,
M.
Colangelo
,
K.
Van Tilburg
,
A.
Arvanitaki
,
S. W.
Nam
, and
K. K.
Berggren
, “
New constraints on dark photon dark matter with superconducting nanowire detectors in an optical haloscope
,”
Phys. Rev. Lett.
128
,
231802
(
2022
).
6.
B.
Majorovits
, “
MADMAX: A new road to axion dark matter detection
,” arXiv:1712.01062 (
2017
).
7.
K.
Irwin
and
G.
Hilton
, “
Transition-Edge sensors
,” in
Cryogenic Particle Detection
, Topics in Applied Physics, edited by
C.
Enss
(
Springer
,
Berlin, Heidelberg
,
2005
), pp.
63
150
.
8.
K.-S.
Isleif
, “
The any light particle search experiment at DESY
,”
Moscow Univ. Phys.
77
,
120
125
(
2022
).
9.
B.
Cabrera
,
R. M.
Clarke
,
P.
Colling
,
A. J.
Miller
,
S.
Nam
, and
R. W.
Romani
, “
Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors
,”
Appl. Phys. Lett.
73
,
735
737
(
1998
).
10.
K.
Hattori
,
T.
Konno
,
Y.
Miura
,
S.
Takasu
, and
D.
Fukuda
, “
An optical transition-edge sensor with high energy resolution
,”
Supercond. Sci. Technol.
35
,
095002
(
2022
).
11.
G.
Angloher
,
S.
Banik
,
G.
Benato
et al, “
DoubleTES detectors to investigate the CRESST low energy background: Results from above-ground prototypes
,” arXiv:2404.02607 (
2024
).
12.
R.
Anthony-Petersen
et al, “
Low energy backgrounds and excess noise in a two-channel low-threshold calorimeter
,” arXiv:2410.16510 (
2024
).
13.
P.
Adari
,
A. A.
Aguilar-Arevalo
,
D.
Amidei
et al, “
EXCESS workshop: Descriptions of rising low-energy spectra
,”
SciPost Phys. Proc.
9
,
001
(
2022
).
14.
G.
Angloher
,
S.
Banik
,
G.
Benato
et al, “
Latest observations on the low energy excess in CRESST-III
,”
SciPost Phys. Proc.
12
,
013
(
2023
).
15.
R.
Anthony-Petersen
,
A.
Biekert
,
R.
Bunker
et al, “
A stress induced source of phonon bursts and quasiparticle poisoning
,” arXiv:2208.02790 (
2022
).
16.
E.
Queguiner
, “
Analysis of the data of the EDELWEISS-LT experiment searching for low-mass WIMP
,” Ph.D. thesis (
Université de Lyon
,
2018
).
17.
R. K.
Romani
, “
Aluminum relaxation as the source of excess low energy events in low threshold calorimeters
,”
J. Appl. Phys.
136
,
124502
(
2024
).
18.
O.
Wen
,
T.
Aralis
,
R.
Basu Thakur
,
B.
Bumble
,
Y.-Y.
Chang
,
K.
Ramanathan
, and
S. R.
Golwala
, “
Performance of a phonon-mediated detector using kids optimized for sub-GeV dark matter
,”
J. Low Temp. Phys.
209
,
510
517
(
2022
).
19.
P.
Szypryt
,
S. R.
Meeker
,
G.
Coiffard
,
N.
Fruitwala
,
B.
Bumble
,
G.
Ulbricht
,
A. B.
Walter
,
M.
Daal
,
C.
Bockstiegel
,
G.
Collura
,
N.
Zobrist
,
I.
Lipartito
, and
B. A.
Mazin
, “
Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy
,”
Opt. Express
25
,
25894
(
2017
).
20.
P. M.
Echternach
,
B. J.
Pepper
,
T.
Reck
, and
C. M.
Bradford
, “
Single photon detection of 1.5 THz radiation with the quantum capacitance detector
,”
Nat. Astron.
2
,
90
97
(
2017
).
21.
C. W.
Fink
,
C. P.
Salemi
,
B. A.
Young
,
D. I.
Schuster
, and
N. A.
Kurinsky
, “
The superconducting quasiparticle-amplifying transmon: A qubit-based sensor for mev scale phonons and single THz photons
,” arXiv:2310.01345 (
2023
).
22.
A. G.
Kozorezov
,
A. F.
Volkov
,
J. K.
Wigmore
et al, “
Quasiparticle-phonon downconversion in nonequilibrium superconductors
,”
Phys. Rev. B
61
,
11807
11819
(
2000
).
23.
B.
Cabrera
and
R.
Romani
, “
Optical/UV astrophysics applications of cryogenic detectors
,” in
Topics in Applied Physics
(
Springer
,
Berlin, Heidelberg
,
2005
), pp.
417
452
.
24.
A. G.
Kozorezov
,
J. K.
Wigmore
,
D.
Martin
,
P.
Verhoeve
, and
A.
Peacock
, “
Electron energy down-conversion in thin superconducting films
,”
Phys. Rev. B
75
,
094513
(
2007
).
25.
A. G.
Kozorezov
,
J. K.
Wigmore
,
D.
Martin
,
P.
Verhoeve
, and
A.
Peacock
, “
Phonon noise in thin metal films in an advanced energy down-conversion stage
,”
J. Low Temp. Phys.
151
,
51
57
(
2008
).
26.
D.
Goldie
,
P.
Brink
,
C.
Patel
,
N.
Booth
, and
G.
Salmon
, “
Statistical noise due to tunneling in superconducting tunnel junction detectors
,”
Appl. Phys. Lett.
64
,
3169
3171
(
1994
).
27.
N.
Rando
,
A.
Peacock
,
A.
van Dordrecht
,
C.
Foden
,
R.
Engelhardt
,
B.
Taylor
,
P.
Gare
,
J.
Lumley
, and
C.
Pereira
, “
The properties of niobium superconducting tunneling junctions as x-ray detectors
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
313
,
173
195
(
1992
).
28.
K. D.
Irwin
,
S. W.
Nam
,
B.
Cabrera
,
B.
Chugg
, and
B. A.
Young
, “
A quasiparticle-trap-assisted transition-edge sensor for phonon-mediated particle detection
,”
Rev. Sci. Instrum.
66
,
5322
5326
(
1995
).
29.
M. A.
Lindeman
,
B.
Dirks
,
J.
van der Kuur
,
P. A. J.
de Korte
,
R. H.
den Hartog
,
L.
Gottardi
,
R. A.
Hijmering
,
H. F. C.
Hoevers
, and
P.
Khosropanah
, “
Relationships between complex impedance, thermal response, and noise in TES calorimeters and bolometers
,”
IEEE Trans. Appl. Supercond.
21
,
254
257
(
2011
).
30.
S. L.
Watkins
, “
Athermal phonon sensors in searches for light dark matter
,” Ph.D. thesis (
University of California
,
Berkeley
,
2022
).
31.
G.
Turin
, “
An introduction to matched filters
,”
IEEE Trans. Inf. Theory
6
,
311
329
(
1960
).
32.
S. R.
Golwala
, “
Exclusion limits on the WIMP-nucleon elastic-scattering cross section from the cryogenic dark matter search
,” Ph.D. thesis (
University of California
,
Berkeley, CA
,
2000
).
33.
P.
Du
,
D.
Egana-Ugrinovic
,
R.
Essig
, and
M.
Sholapurkar
, “
Sources of low-energy events in low-threshold dark-matter and neutrino detectors
,”
Phys. Rev. X
12
,
011009
(
2022
).
34.
N.
Swimmer
,
W. H.
Clay
,
N.
Zobrist
, and
B. A.
Mazin
, “
Characterizing the dark count rate of a large-format MKID array
,”
Opt. Express
31
,
10775
(
2023
).
35.
L.
Manenti
,
C.
Pepe
,
I.
Sarnoff
,
T.
Ibrayev
,
P.
Oikonomou
,
A.
Knyazev
,
E.
Monticone
,
H.
Garrone
,
F.
Alder
,
O.
Fawwaz
,
A. J.
Millar
,
K. D.
Morå
,
H.
Shams
,
F.
Arneodo
, and
M.
Rajteri
, “
Study of dark counts in optical superconducting transition-edge sensors
,” arXiv:2402.03073v1 (
2024
).
36.
R.
Shah
,
K.-S.
Isleif
,
F.
Januschek
,
A.
Lindner
, and
M.
Schott
, “
TES detector for ALPS II
,” arXiv:2110.10654 (
2021
).
37.
J. A.
Rubiera Gimeno
,
K.-S.
Isleif
,
F.
Januschek
,
A.
Lindner
,
M.
Meyer
,
G.
Othman
,
M.
Schott
,
R.
Shah
, and
L.
Sohl
, “
The TES detector of the ALPS II experiment
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
1046
,
167588
(
2023
).
38.
C. W.
Fink
,
S. L.
Watkins
,
T.
Aramaki
et al, “
Characterizing TES power noise for future single optical-phonon and infrared-photon detectors
,”
AIP Adv.
10
,
085221
(
2020
).
39.
G. G.
Taylor
,
A. B.
Walter
,
B.
Korzh
,
B.
Bumble
,
S. R.
Patel
,
J. P.
Allmaras
,
A. D.
Beyer
,
R.
O'Brient
,
M. D.
Shaw
, and
E. E.
Wollman
, “
Low-noise single-photon counting superconducting nanowire detectors at infrared wavelengths up to 29 μm
,”
Optica
10
,
1672
(
2023
).
40.
K.
Nordlund
,
F.
Kong
,
F.
Djurabekova
,
M.
Heikinheimo
,
K.
Tuominen
, and
N.
Mirabolfathi
, “
Defect recombination origin of low energy excess in semiconductor detectors
,” arXiv:2408.07518v1 (
2024
).
You do not currently have access to this content.