We report the enhancement of third-order optical nonlinearity in dielectric/metal/dielectric sandwiches driven by the epsilon-near-zero (ENZ) effect. The lithium niobate (LN) and Au are chosen as the typical dielectric and metal, respectively. The sandwich nanostructure consists of two layers of LN film (90 nm) and an insertion of Au layer of different thicknesses (9, 13, and 17 nm). The ENZ wavelength of LN/Au/LN (LAL) sandwiches is experimentally obtained with a modulation from 0.96 μm (Au layer 17 nm) to 1.33 μm (Au layer 9 nm). The nonlinear refractive index n2 and nonlinear absorption coefficient β are determined at variable near infrared wavelengths using the Z-scan method. The maximum n2=2.31×1014(6.76×1015)m2/W and β=9.20×108(1.94×108)m/W are obtained in the LAL sandwich with a 13 nm Au layer of ENZ wavelength 1.088 μm at the wavelength 1.064 μm with a pulse duration of 25 ps (120 fs). The n2 is around 19 and 25 times larger than those in the pure LN film of thickness 180 nm measured at the picosecond and femtosecond time domains, respectively. The enhancement of n2 in LAL sandwiches follows the numerical results obtained from the ENZ effect. Especially, the LN layer and the Au layer have comparable contributions to the effective third-order susceptibility χeff(3), which leads to the reconfigurable χeff(3) by changing the thickness of each layer and further to modulate the n2 and β of the samples. The results offer a promising way to attain large and reconfigurable optical nonlinearities for application in all-optical photonic devices at a specified wavelength.

1.
R. W.
Boyd
,
Nonlinear Optics
, 3rd ed. (
Academic Press
,
2008
).
2.
O.
Reshef
,
I. D.
Leon
,
M. Z.
Alam
, and
R. W.
Boyd
, “
Nonlinear optical effects in epsilon-near-zero media
,”
Nat. Rev. Mater.
4
,
535
551
(
2019
).
3.
T. S.
Luk
,
D.
de Ceglia
,
S.
Liu
,
G. A.
Keeler
,
R. P.
Prasankumar
,
M. A.
Vincenti
,
M.
Scalora
,
M. B.
Sinclair
, and
S.
Campione
, “
Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films
,”
Appl. Phys. Lett.
106
,
151103
(
2015
).
4.
M. Z.
Alam
,
I. D.
Leon
, and
R. W.
Boyd
, “
Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region
,”
Science
352
,
795
(
2016
).
5.
L.
Caspani
,
R. P. M.
Kaipurath
,
M.
Clerici
,
M.
Ferrera
,
T.
Roger
,
J.
Kim
,
N.
Kinsey
,
M.
Pietrzyk
,
A. D.
Falco
,
V. M.
Shalaev
,
A.
Boltasseva
, and
D.
Faccio
, “
Enhanced nonlinear refractive index in ε-near-zero materials
,”
Phys. Rev. Lett.
116
,
233901
(
2016
).
6.
L.
Vertchenko
and
A.
Lavrinenko
, “
Implications of low–refractive mode index on nonlinear optical interactions
,”
Laser Photonics Rev.
17
,
2200741
(
2023
).
7.
I.
Liberal
and
N.
Engheta
, “
Near-zero refractive index photonics
,”
Nat. Photonics
11
,
149
158
(
2017
).
8.
A.
Capretti
,
Y.
Wang
,
N.
Engheta
, and
L. D.
Negro
, “
Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range
,”
ACS Photonics
2
,
1584
1591
(
2015
).
9.
S.
Suresh
,
O.
Reshef
,
M. Z.
Alam
,
J.
Upham
,
M.
Karimi
, and
R. W.
Boyd
, “
Enhanced nonlinear optical responses of layered epsilon-near-zero metamaterials at visible frequencies
,”
ACS Photonics
8
,
125
129
(
2021
).
10.
R. W.
Boyd
and
J. E.
Sipe
, “
Nonlinear optical susceptibilities of layered composite materials
,”
J. Opt. Soc. Am. B
11
,
297
(
1994
).
11.
B.
Guo
,
Z.
Zhang
,
Y.
Huo
,
S.
Wang
, and
T.
Ning
, “
Modulation of epsilon-near-zero wavelength and enhancement of third-order optical nonlinearity in ito/au multilayer films
,”
Chin. Opt. Lett.
21
,
013602
(
2023
).
12.
Z.
Guo
,
D.
Wu
,
F.
Zhang
,
J.
Dong
,
X.
Jiang
,
P.
Han
, and
Y.
Chen
, “
Boosting optical nonlinearity in epsilon-near-zero trilayer coatings
,”
Phys. Chem. Chem. Phys.
25
,
11350
11355
(
2023
).
13.
D.
Genchi
,
I. G.
Balasa
,
T.
Cesca
, and
G.
Mattei
, “
Tunable third-order nonlinear optical response in ε-near-zero multilayer metamaterials
,”
Phys. Rev. Appl.
16
,
064020
(
2021
).
14.
D. E.
Zelmon
,
D. L.
Small
, and
D.
Jundt
, “
Infrared corrected sellmeier coefficients for congruently grown lithium niobate and 5 mol % magnesium oxide –doped lithium niobate
,”
J. Opt. Soc. Am. B
14
,
3319
3322
(
1997
).
15.
P. B.
Johnson
and
R. W.
Christy
, “
Optical constants of the noble metals
,”
Phys. Rev. B
6
,
4370
4379
(
1972
).
16.
M. A.
Manthrammel
,
A. M.
Aboraia
,
M.
Shkir
,
I. S.
Yahia
,
M. A.
Assiri
,
H. Y.
Zahran
,
V.
Ganesh
,
S.
AlFaify
, and
A. V.
Soldatov
, “
Optical analysis of nanostructured rose Bengal thin films using Kramers–Kronig approach: New trend in laser power attenuation
,”
Opt. Laser Technol.
112
,
207
214
(
2019
).
17.
T.
Tumkur
,
Y.
Barnakov
,
S. T.
Kee
,
M. A.
Noginov
, and
V.
Liberman
, “
Permittivity evaluation of multilayered hyperbolic metamaterials: Ellipsometry vs. reflectometry
,”
J. Appl. Phys.
117
,
103104
(
2015
).
18.
S.
Campione
,
F.
Marquier
,
J. P.
Hugonin
,
A. R.
Ellis
,
J. F.
Klem
,
M. B.
Sinclair
, and
T. S.
Luk
, “
Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials
,”
Sci. Rep.
6
,
34746
(
2016
).
19.
J.
Götte
,
A.
Aiello
, and
J. P.
Woerdman
, “
Loss-induced transition of the Goos-Hänchen effect for metals and dielectrics
,”
Opt. Express
16
,
3961
3969
(
2008
).
20.
M.
Sheik-Bahae
,
A. A.
Said
,
T. H.
Wei
,
D. J.
Hagan
, and
E. W. V.
Stryland
, “
Sensitive measurement of optical nonlinearities using a single beam
,”
IEEE J. Quantum Electron.
26
,
760
(
1990
).
21.
T.
Ning
and
Y.
Zhou
, “
Effect of structure on nonlinear optical properties in cacu3ti4o12 films
,”
J. Appl. Phys.
118
,
233103
(
2015
).
22.
T.
Ning
,
H.
Lu
,
Y.
Zhou
, and
B.
Man
, “
Decrease and enhancement of third-order optical nonlinearity in metal–dielectric composite films
,”
Appl. Phys. Lett.
112
,
151904
(
2018
).
23.
M.
Yin
,
H. P.
Li
,
S. H.
Tang
, and
W.
Ji
, “
Determination of nonlinear absorption and refraction by single z-scan method
,”
Appl. Phys. B
70
,
587
(
2000
).
24.
R.
Adair
,
L. L.
Chase
, and
S. A.
Payne
, “
Nonlinear refractive index of optical crystals
,”
Phys. Rev. B
39
,
3337
3350
(
1989
).
25.
O.
Lysenko
,
M.
Bache
, and
A.
Lavrinenko
, “
Third-order susceptibility of gold for ultrathin layers
,”
Opt. Lett.
41
,
317
320
(
2016
).
26.
R. W.
Boyd
,
Z.
Shi
, and
I. D.
Leon
, “
The third-order nonlinear optical susceptibility of gold
,”
Opt. Commun.
326
,
74
79
(
2014
).
27.
A.
Marini
,
M.
Conforti
,
G. D.
Valle
,
H. W.
Lee
,
T. X.
Tran
,
W.
Chang
,
M. A.
Schmidt
,
S.
Longhi
,
P. S. J.
Russell
, and
F.
Biancalana
, “
Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals
,”
New J. Phys.
15
,
013033
(
2013
).
28.
R. D.
Coso
and
J.
Solis
, “
Relation between nonlinear refractive index and third-order susceptibility in absorbing media
,”
J. Opt. Soc. Am. B
21
,
640
644
(
2004
).
29.
R. L.
Sutherland
,
Handbook of Nonlinear Optics
(
CRC Press
,
2003
).
30.
J.
Sukham
,
O.
Takayama
,
M.
Mahmoodi
,
S.
Sychev
,
A.
Bogdanov
,
S.
Tavassoli
,
A.
Lavrinenko
, and
R.
Malureanu
, “
Investigation of effective media applicability for ultrathin multilayer structures
,”
Nanoscale
11
,
12582
12588
(
2019
).
You do not currently have access to this content.