Two-dimensional (2D) ferroelectrics and multiferroics have attracted considerable scientific and technological interest in recent years due to the increasing demands for miniaturization and low energy consumption of electronic devices. At present, the research on 2D ferroelectrics and multiferroics is still focused on van der Waals materials, while the known bulk ferroelectric and multiferroic materials are mostly found in perovskite systems. The ability to prepare and transfer 2D perovskite oxides has provided unprecedented opportunities for developing ferroelectrics and multiferroics based on 2D perovskites. In this Perspective, we review the research progress on 2D ferroelectrics and multiferroics in inorganic perovskites in terms of different ferroelectric and magnetoelectric coupling mechanisms. The improper ferroelectricity and novel magnetoelectric coupling mechanisms discovered in 2D perovskites are emphasized, and then, the main challenges and future development direction are put forward.

1.
R.
Ramesh
,
S.
Aggarwal
, and
O.
Auciello
, “
Science and technology of ferroelectric films and heterostructures for non-volatile ferroelectric memories
,”
Mater. Sci. Eng.: R: Rep.
32
,
191
236
(
2001
).
2.
J. F.
Scott
, “
Applications of modern ferroelectrics
,”
Science
315
,
954
959
(
2007
).
3.
N.
Nuraje
and
K.
Su
, “
Perovskite ferroelectric nanomaterials
,”
Nanoscale
5
,
8752
(
2013
).
4.
J. B.
Goodenough
, “
Electronic and ionic transport properties and other physical aspects of perovskites
,”
Rep. Prog. Phys.
67
,
1915
1993
(
2004
).
5.
A. A.
Bokov
and
Z.-G.
Ye
, “
Recent progress in relaxor ferroelectrics with perovskite structure
,”
J. Mater. Sci.
41
,
31
52
(
2006
).
6.
W. L.
Zheng
,
X. C.
Wang
,
X.
Zhang
,
B.
Chen
,
H.
Suo
,
Z. F.
Xing
,
Y. Z.
Wang
,
H.
Wei
,
J. K.
Chen
,
Y.
Guo
, and
F.
Wang
, “
Emerging halide perovskite ferroelectrics
,”
Adv. Mater.
35
,
2205410
(
2023
).
7.
Y. P.
Fu
,
S.
Jin
, and
X. Y.
Zhu
, “
Stereochemical expression of ns2 electron pairs in metal halide perovskites
,”
Nat. Rev. Chem.
5
,
838
852
(
2021
).
8.
I. B.
Bersuker
, “
Pseudo-Jahn-Teller effect: A two-state paradigm in formation, deformation, and transformation of molecular systems and solids
,”
Chem. Rev.
113
,
1351
(
2013
).
9.
N. A.
Benedek
and
C. J.
Fennie
, “
Why are there so few perovskite ferroelectrics?
,”
J. Phys. Chem. C
117
,
13339
13349
(
2013
).
10.
H.
Qiao
,
C.
Wang
,
W. S.
Choi
,
M. H.
Park
, and
Y.
Kim
, “
Ultra-thin ferroelectrics
,”
Mater. Sci. Eng.: R: Rep.
145
,
100622
(
2021
).
11.
M.
Dawber
,
K. M.
Rabe
, and
J. F.
Scott
, “
Physics of thin-film ferroelectric oxides
,”
Rev. Mod. Phys.
77
,
1083
1130
(
2005
).
12.
T. M.
Shaw
,
S.
Trolier-McKinstry
, and
P. C.
McIntyre
, “
The properties of ferroelectric films at small dimensions
,”
Annu. Rev. Mater. Sci.
30
,
263
298
(
2000
).
13.
C. H.
Ahn
,
K. M.
Rabe
, and
J.-M.
Triscone
, “
Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures
,”
Science
303
,
488
491
(
2004
).
14.
V.
Petkov
,
V.
Buscaglia
,
M. T.
Buscaglia
,
Z.
Zhao
, and
Y.
Ren
, “
Structural coherence and ferroelectricity decay in submicron- and nano-sized perovskites
,”
Phys. Rev. B
78
,
054107
(
2008
).
15.
J.
Junquera
and
P.
Ghosez
, “
Critical thickness for ferroelectricity in perovskite ultrathin films
,”
Nature
422
,
506
509
(
2003
).
16.
D. D.
Fong
,
G. B.
Stephenson
,
S. K.
Streiffer
,
J. A.
Eastman
,
O.
Auciello
,
P. H.
Fuoss
, and
C.
Thompson
, “
Ferroelectricity in ultrathin perovskite films
,”
Science
304
,
1650
1653
(
2004
).
17.
Y. S.
Kim
,
D. H.
Kim
,
J. D.
Kim
,
Y. J.
Chang
,
T. W.
Noh
,
J. H.
Kong
,
K.
Char
,
Y. D.
Park
,
S. D.
Bu
,
J.-G.
Yoon
, and
J.-S.
Chung
, “
Critical thickness of ultrathin ferroelectric BaTiO3 films
,”
Appl. Phys. Lett.
86
,
102907
(
2005
).
18.
C.
Woo
and
Y.
Zheng
, “
Depolarization in modeling nano-scale ferroelectrics using the landau free energy functional
,”
Appl. Phys. A
91
,
59
63
(
2008
).
19.
S. N.
Kolpak
and
A. M.
Rappe
, “
Ferroelectricity in ultrathin perovskite films
,”
Phys. Rev. B
72
,
020101(R)
(
2005
).
20.
P.
Gao
,
Z.
Zhang
,
M.
Li
,
R.
Ishikawa
,
B.
Feng
,
H.-J.
Liu
,
Y.-L.
Huang
,
N.
Shibata
,
X.
Ma
,
S.
Chen
,
J.
Zhang
,
K.
Liu
,
E.-G.
Wang
,
D.
Yu
,
L.
Liao
,
Y.-H.
Chu
, and
Y.
Ikuhara
, “
Possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films
,”
Nat. Commun.
8
,
15549
(
2017
).
21.
C.-L.
Jia
,
V.
Nagarajan
,
J.-Q.
He
,
L.
Houben
,
T.
Zhao
,
R.
Ramesh
,
K.
Urban
, and
R.
Waser
, “
Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films
,”
Nat. Mater.
6
,
64
69
(
2007
).
22.
K.
Chang
,
J. W.
Liu
,
H. C.
Lin
,
N.
Wang
,
K.
Zhao
,
A.
Zhang
,
F.
Jin
,
Y.
Zhong
,
X. P.
Hu
,
W. H.
Duan
,
Q. M.
Zhang
,
L.
Fu
,
Q.-K.
Xue
,
X.
Chen
, and
S.-H.
Ji
, “
Discovery of robust in-plane ferroelectricity in atomic-thick SnTe
,”
Science
353
,
274
278
(
2016
).
23.
F.
Liu
,
L.
You
,
K. L.
Seyler
,
X.
Li
,
P.
Yu
,
J.
Lin
,
X.
Wang
,
J.
Zhou
,
H.
Wang
,
H.
He
,
S. T.
Pantelides
,
W.
Zhou
,
P.
Sharma
,
X.
Xu
,
P. M.
Ajayan
,
J.
Wang
, and
Z.
Liu
, “
Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes
,”
Nat. Commun.
7
,
12357
(
2016
).
24.
W.
Ding
,
J.
Zhu
,
Z.
Wang
,
Y.
Gao
,
D.
Xiao
,
Y.
Gu
,
Z.
Zhang
, and
W.
Zhu
, “
Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials
,”
Nat. Commun.
8
,
14956
(
2017
).
25.
C. X.
Zheng
,
L.
Yu
,
L.
Zhu
,
J. L.
Collins
,
D.
Kim
,
Y. D.
Lou
,
C.
Xu
,
M.
Li
,
Z.
Wei
,
Y.
Zhang
,
M. T.
Edmonds
,
S. Q.
Li
,
J.
Seidel
,
Y.
Zhu
,
J. Z.
Liu
,
W.-X.
Tang
, and
M. S.
Fuhrer
, “
Room temperature in-plane ferroelectricity in van der Waals In2Se3
,”
Sci. Adv.
4
,
eaar7720
(
2018
).
26.
Y.
Zhou
,
D.
Wu
,
Y.
Zhu
,
Y.
Cho
,
Q.
He
,
X.
Yang
,
K.
Herrera
,
Z.
Chu
,
Y.
Han
,
M. C.
Downer
,
H.
Peng
, and
K.
Lai
, “
Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes
,”
Nano Lett.
17
,
5508
5513
(
2017
).
27.
L.
Qi
,
S.
Ruan
, and
Y.-J.
Zeng
, “
Review on recent developments in 2D ferroelectrics: Theories and applications
,”
Adv. Mater.
33
,
2005098
(
2021
).
28.
M. H.
Wu
and
P.
Jena
, “
The rise of two-dimensional van der Waals ferroelectrics
,”
WIREs Comput. Mol. Sci.
8
,
e1365
(
2018
).
29.
L.
Li
and
M. H.
Wu
, “
Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators
,”
ACS Nano
11
,
6382
(
2017
).
30.
C.
Xiao
,
F.
Wang
,
S. A.
Yang
,
Y.
Lu
,
Y.
Feng
, and
S.
Zhang
, “
Elemental ferroelectricity and antiferroelectricity in group-V monolayer
,”
Adv. Funct. Mater.
28
,
1707383
(
2018
).
31.
Z.
Fei
,
W.
Zhao
,
T. A.
Palomaki
,
B.
Sun
,
M. K.
Miller
,
Z.
Zhao
,
J.
Yan
,
X.
Xu
, and
D. H.
Cobden
, “
Ferroelectric switching of a two-dimensional metal
,”
Nature
560
,
336
339
(
2018
).
32.
J.
Gou
,
H.
Bai
,
X.
Zhang
,
Y.
Huang
,
S.
Duan
,
A.
Ariando
,
S. A.
Yang
,
L.
Chen
,
Y.
Lu
, and
A. T. S.
Wee
, “
Two-dimensional ferroelectricity in a single-element bismuth monolayer
,”
Nature
617
,
67
72
(
2023
).
33.
W.
Li
,
X.
Zhang
,
J.
Yang
,
S.
Zhou
,
C.
Song
,
P.
Cheng
,
Y.-Q.
Zhang
,
B.
Feng
,
Z.
Wang
,
Y.
Lu
,
K.
Wu
, and
L.
Chen
, “
Emergence of ferroelectricity in a nonferroelectric monolayer
,”
Nat. Commun.
14
,
2757
(
2023
).
34.
C.
Wang
,
L.
You
,
D.
Cobden
, and
J.
Wang
, “
Towards two-dimensional van der Waals ferroelectrics
,”
Nat. Mater.
22
,
542
552
(
2023a
).
35.
J.
Ji
,
G.
Yu
,
C.
Xu
, and
H.
Xiang
, “
General theory for bilayer stacking ferroelectricity
,”
Phys. Rev. Lett.
130
,
146801
(
2023
).
36.
J. Y.
Ji
,
G. L.
Yu
,
C. S.
Xu
, and
H. J.
Xiang
, “
Fractional quantum ferroelectricity
,”
Nat. Commun.
15
,
135
(
2024
).
37.
E.
Dagotto
, “
Complexity in strongly correlated electronic systems
,”
Science
309
,
257
262
(
2005
).
38.
E.
Dagotto
,
T.
Hotta
, and
A.
Moreo
, “
Colossal magnetoresistant materials: The key role of phase separation
,”
Phys. Rep.
344
,
1
153
(
2001
).
39.
W.
Eerenstein
,
N. D.
Mathur
, and
J. F.
Scott
, “
Multiferroic and magnetoelectric materials
,”
Nature
442
,
759
765
(
2006
).
40.
R.
Ramesh
and
N. A.
Spaldin
, “
Multiferroics: Progress and prospects in thin films
,”
Nat. Mater.
6
,
21
29
(
2007
).
41.
S.-W.
Cheong
and
M.
Mostovoy
, “
Multiferroics: A magnetic twist for ferroelectricity
,”
Nat. Mater.
6
,
13
(
2007
).
42.
Y.
Tokura
and
S.
Seki
, “
Multiferroics with spiral spin orders
,”
Adv. Mater.
22
,
1554
1565
(
2010
).
43.
Y.
Tokura
,
S.
Seki
, and
N.
Nagaosa
, “
Multiferroics of spin origin
,”
Rep. Prog. Phys.
77
,
076501
(
2014
).
44.
S.
Dong
,
J.-M.
Liu
,
M.-H.
Whangbo
, and
Z. F.
Ren
, “
Multiferroic materials and magnetoelectric physics: Symmetry, entanglement, excitation, and topology
,”
Adv. Phys.
64
,
519
(
2015
).
45.
G.
Catalan
and
J. F.
Scott
, “
Physics and applications of bismuth ferrite
,”
Adv. Mater.
21
,
2463
(
2009
).
46.
M.
Bibes
and
A.
Barthelemy
, “
Towards a magnetoelectric memory
,”
Nat. Mater.
7
,
425
426
(
2008
).
47.
Y. H.
Chu
,
L. W.
Martin
,
M. B.
Holcomb
,
M.
Gajek
,
S. J.
Han
,
Q.
He
,
N.
Balke
,
C. H.
Yang
,
D.
Lee
,
W.
Hu
et al, “
Electric-field control of local ferromagnetism using a magnetoelectric multiferroic
,”
Nat. Mater.
7
,
478
(
2008
).
48.
J. T.
Heron
,
J. L.
Bosse
,
Q.
He
,
Y.
Gao
,
M.
Trassin
,
L.
Ye
,
J. D.
Clarkson
,
C.
Wang
,
J.
Liu
,
S.
Salahuddin
,
D. C.
Ralph
,
D. G.
Schlom
,
J.
Íñiguez
,
B. D.
Huey
, and
R.
Ramesh
, “
Deterministic switching of ferromagnetism at room temperature using an electric field
,”
Nature
516
,
370
373
(
2014
).
49.
N. A.
Spaldin
and
R.
Ramesh
, “
Advances in magnetoelectric multiferroics
,”
Nat. Mater.
18
,
203
(
2019
).
50.
J.
Wang
,
J. B.
Neaton
,
H.
Zheng
,
V.
Nagarajan
,
S. B.
Ogale
,
B.
Liu
,
D.
Viehland
,
V.
Vaithyanathan
,
D. G.
Schlom
,
U. V.
Waghmare
,
N. A.
Spaldin
,
K. M.
Rabe
,
M.
Wuttig
, and
R.
Ramesh
, “
Epitaxial BiFeO3 multiferroic thin film heterostructures
,”
Science
299
,
1719
1722
(
2003
).
51.
T.
Kimura
,
T.
Goto
,
H.
Shintani
,
K.
Ishizaka
,
T.
Arima
, and
Y.
Tokura
, “
Magnetic control of ferroelectric polarization
,”
Nature
426
,
55
(
2003
).
52.
M.
Fiebig
, “
Revival of the magnetoelectric effect
,”
J. Phys. D
38
,
R123
(
2005
).
53.
N. A.
Spaldin
and
M.
Fiebig
, “
The renaissance of magnetoelectric multiferroics
,”
Science
309
,
391
(
2005
).
54.
M.
Fiebig
,
T.
Lottermoser
,
D.
Meier
, and
M.
Trassin
, “
The evolution of multiferroics
,”
Nat. Rev. Mater.
1
,
16046
(
2016
).
55.
W.
Luo
,
K.
Xu
, and
H.
Xiang
, “
Two-dimensional hyperferroelectric metals: A different route to ferromagnetic-ferroelectric multiferroics
,”
Phys. Rev. B
96
,
235415
(
2017
).
56.
C. X.
Huang
,
Y. P.
Du
,
H. P.
Wu
,
H. J.
Xiang
,
K. M.
Deng
, and
E. J.
Kan
, “
Prediction of intrinsic ferromagnetic ferroelectricity in a transition-metal halide monolayer
,”
Phys. Rev. Lett.
120
,
147601
(
2018
).
57.
J. S.
Qi
,
H.
Wang
,
X. F.
Chen
, and
X. F.
Qian
, “
Two-dimensional multiferroic semiconductors with coexisting ferroelectricity and ferromagnetism
,”
Appl. Phys. Lett.
113
,
043102
(
2018
).
58.
Y.
Lai
,
Z.
Song
,
Y.
Wan
,
M.
Xue
,
C.
Wang
,
Y.
Ye
,
L.
Dai
,
Z.
Zhang
,
W.
Yang
,
H.
Du
, and
J.
Yang
, “
Two-dimensional ferromagnetism and driven ferroelectricity in van der Waals CuCrP2S6
,”
Nanoscale
11
,
5163
5170
(
2019
).
59.
H.
Tan
,
M.
Li
,
H.
Liu
,
Z.
Liu
,
Y.
Li
, and
W.
Duan
, “
Two-dimensional ferromagnetic-ferroelectric multiferroics in violation of the d0 rule
,”
Phys. Rev. B
99
,
195434
(
2019
).
60.
H.
Ai
,
X.
Song
,
S.
Qi
,
W.
Li
, and
M.
Zhao
, “
Intrinsic multiferroicity in two-dimensional VOCl2 monolayers
,”
Nanoscale
11
,
1103
1110
(
2019
).
61.
H.-P.
You
,
N.
Ding
,
J.
Chen
, and
S.
Dong
, “
Prediction of two-dimensional ferromagnetic ferroelectric VOF2 monolayer
,”
Phys. Chem. Chem. Phys.
22
,
24109
24115
(
2020
).
62.
X.
Liu
,
A. P.
Pyatakov
, and
W.
Ren
, “
Magnetoelectric coupling in multiferroic bilayer VS2
,”
Phys. Rev. Lett.
125
,
247601
(
2020
).
63.
J. J.
Zhang
,
L. F.
Lin
,
Y.
Zhang
,
M. H.
Wu
,
B. I.
Yakobson
, and
S.
Dong
, “
Type-II multiferroic Hf2VC2F2 MXene monolayer with high transition temperature
,”
J. Am. Chem. Soc.
140
,
9768
(
2018
).
64.
Q.
Song
,
C. A.
Occhialini
,
E.
Ergecen
,
B.
Ilyas
,
D.
Amoroso
,
P.
Barone
,
J.
Kapeghian
,
K.
Watanabe
,
T.
Taniguchi
,
A. S.
Botana
,
S.
Picozzi
,
N.
Gedik
, and
R.
Comin
, “
Evidence for a single-layer van der Waals multiferroic
,”
Nature
602
,
601
605
(
2022
).
65.
J.
Chu
,
Y.
Wang
,
X.
Wang
,
K.
Hu
,
G.
Rao
,
C.
Gong
,
C.
Wu
,
H.
Hong
,
X.
Wang
,
K.
Liu
,
C.
Gao
, and
J.
Xiong
, “
2D polarized materials: Ferromagnetic, ferrovalley, ferroelectric materials, and related heterostructures
,”
Adv. Mater.
33
,
2004469
(
2021
).
66.
Y.
Gao
,
M.
Gao
, and
Y.
Lu
, “
Two-dimensional multiferroics
,”
Nanoscale
13
,
19324
19340
(
2021
).
67.
X.
Tang
and
L.
Kou
, “
Two-dimensional ferroics and multiferroics: Platforms for new physics and applications
,”
J. Phys. Chem. Lett.
10
,
6634
(
2019
).
68.
B.
Behera
,
B. C.
Sutar
, and
N. R.
Pradhan
, “
Recent progress on 2D ferroelectric and multiferroic materials, challenges, and opportunity
,”
Emergent Mater.
4
,
847
863
(
2021
).
69.
R.
Du
,
Y.
Wang
,
M.
Cheng
,
P.
Wang
,
H.
Li
,
W.
Feng
,
L.
Song
,
J.
Shi
, and
J.
He
, “
Two-dimensional multiferroic material of metallic p-doped SnSe
,”
Nat. Commun.
13
,
6130
(
2022
).
70.
C.
Tang
and
A.
Du
, “
Perspective on computational design of two-dimensional materials with robust multiferroic coupling
,”
Appl. Phys. Lett.
122
,
130502
(
2023
).
71.
W.
Xun
,
C.
Wu
,
H.
Sun
,
W.
Zhang
,
Y.-Z.
Wu
, and
P.
Li
, “
Coexisting magnetism, ferroelectric, and ferrovalley multiferroic in stacking-dependent two-dimensional materials
,”
Nano Lett.
24
,
3541
3547
(
2024
).
72.
D.
Ji
,
S.
Cai
,
T. R.
Paudel
,
H.
Sun
,
C.
Zhang
,
L.
Han
,
Y.
Wei
,
Y.
Zang
,
M.
Gu
,
Y.
Zhang
,
W.
Gao
,
H.
Huyan
,
W.
Guo
,
D.
Wu
,
Z.
Gu
,
E. Y.
Tsymbal
,
P.
Wang
,
Y.
Nie
, and
X.
Pan
, “
Freestanding crystalline oxide perovskites down to the monolayer limit
,”
Nature
570
,
87
(
2019
).
73.
J.
Lu
,
W.
Luo
,
J.
Feng
, and
H.
Xiang
, “
Unusual ferroelectricity in two-dimensional perovskite oxide thin films
,”
Nano Lett.
18
,
595
601
(
2018
).
74.
D.
Lu
,
D. T.
Baek
,
S. S.
Hong
,
L. F.
Kourkoutis
,
Y.
Hikita
, and
H. Y.
Hwang
, “
Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers
,”
Nat. Mater.
15
,
1255
(
2016
).
75.
S. S.
Hong
,
J. H.
Yu
,
D.
Lu
,
A. F.
Marshall
,
Y.
Hikita
,
Y.
Cui
, and
H. Y.
Hwang
, “
Two-dimensional limit of crystalline order in perovskite membrane films
,”
Sci. Adv.
3
,
eaao5173
(
2017
).
76.
A. G.
Ricciardulli
,
S.
Yang
,
J. H.
Smet
, and
M.
Saliba
, “
Emerging perovskite monolayers
,”
Nat. Mater.
20
,
1325
1336
(
2021
).
77.
J.
Zhang
,
Y.
Xie
,
J.
He
,
K.
Ji
, and
X.
Shen
, “
Ferroelectricity induced by lone pair electron effect in halide perovskite monolayers
,”
Phys. Rev. B
110
,
035419
(
2024
).
78.
Y.
Zhou
,
S.
Dong
,
C. X.
Shan
,
K.
Ji
, and
J. T.
Zhang
, “
Two-dimensional ferroelectricity induced by octahedral rotation distortion in perovskite oxides
,”
Phys. Rev. B
105
,
075408
(
2022
).
79.
Y.
Zhou
,
Z.
Chen
,
Z.
Wu
,
X.
Shen
,
J.
Wang
,
J.
Zhang
, and
H.
Sun
, “
Hybrid improper ferroelectricity and magnetoelectric coupling in a two-dimensional perovskite oxide
,”
Phys. Rev. B
103
,
224409
(
2021
).
80.
X. F.
Shen
,
F.
Wang
,
X. M.
Lu
, and
J. T.
Zhang
, “
Two-dimensional multiferroics with intrinsic magnetoelectric coupling in A-site ordered perovskite monolayers
,”
Nano Lett.
23
,
735
(
2023
).
81.
J.
Zhang
,
X.
Shen
,
Y.
Wang
,
C.
Ji
,
Y.
Zhou
,
J.
Wang
,
F.
Huang
, and
X.
Lu
, “
Design of two-dimensional multiferroics with direct polarization-magnetization coupling
,”
Phys. Rev. Lett.
125
,
017601
(
2020
).
82.
X. F.
Shen
,
Q. Y.
Luo
,
Z. S.
Wu
,
Y.
Zhou
,
J. L.
Wang
,
J. T.
Zhang
,
J.
Su
, and
X. M.
Lu
, “
Magnetoelectric coupling dependent on ferroelectric switching paths in two-dimensional perovskite multiferroics
,”
Phys. Rev. B
103
,
L220406
(
2021
).
83.
J. T.
Zhang
,
Y.
Zhou
,
F.
Wang
,
X. F.
Shen
,
J. L.
Wang
, and
X. M.
Lu
, “
Coexistence and coupling of spin-induced ferroelectricity and ferromagnetism in perovskites
,”
Phys. Rev. Lett.
129
,
117603
(
2022
).
84.
D. A.
Tenne
,
P.
Turner
,
J. D.
Schmidt
,
M.
Biegalski
,
Y. L.
Li
,
L. Q.
Chen
,
A.
Soukiassian
,
S.
Trolier-McKinstry
,
D. G.
Schlom
,
X. X.
Xi
,
D. D.
Fong
,
P. H.
Fuoss
,
J. A.
Eastman
,
G. B.
Stephenson
,
C.
Thompson
, and
S. K.
Streiffer
, “
Ferroelectricity in ultrathin BaTiO3 films: Probing the size effect by ultraviolet Raman spectroscopy
,”
Phys. Rev. Lett.
103
,
177601
(
2009
).
85.
Y. J.
Shin
,
Y.
Kim
,
S.-J.
Kang
,
H.-H.
Nahm
,
P.
Murugavel
,
J. R.
Kim
,
M. R.
Cho
,
L.
Wang
,
S. M.
Yang
,
J.
Yoon
,
J.
Chung
,
M.
Kim
,
H.
Zhou
,
S. H.
Chang
, and
T. W.
Noh
, “
Interface control of ferroelectricity in an SrRuO3/BaTiO3/SrRuO3 capacitor and its critical thickness
,”
Adv. Mater.
29
,
1602795
(
2017
).
86.
H.
Wang
,
Z. R.
Liu
,
H. Y.
Yoong
,
T. R.
Paudel
,
J. X.
Xiao
,
R.
Guo
,
W. N.
Lin
,
P.
Yang
,
J.
Wang
,
G. M.
Chow
,
T.
Venkatesan
,
E. Y.
Tsymbal
,
H.
Tian
, and
J. S.
Chen
, “
Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit
,”
Nat. Commun.
9
,
3319
(
2018
).
87.
E.
Bousquet
,
M.
Dawber
,
N.
Stucki
,
C.
Lichtensteiger
,
P.
Hermet
,
S.
Gariglio
,
J.-M.
Triscone
, and
P.
Ghosez
, “
Improper ferroelectricity in perovskite oxide artificial superlattices
,”
Nature
452
,
732
736
(
2008
).
88.
N. A.
Benedek
and
C. J.
Fennie
, “
Hybrid improper ferroelectricity: A mechanism for controllable polarization-magnetization coupling
,”
Phys. Rev. Lett.
106
,
107204
(
2011
).
89.
N. A.
Benedek
and
M. A.
Hayward
, “
Hybrid improper ferroelectricity: A theoretical, computational, and synthetic perspective
,”
Annu. Rev. Mater. Res.
52
,
331
355
(
2022
).
90.
Y. S.
Oh
,
X.
Luo
,
F.-T.
Huang
,
Y.
Wang
, and
S.-W.
Cheong
, “
Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals
,”
Nat. Mater.
14
,
407
413
(
2015
).
91.
F. T.
Huang
,
F.
Xue
,
B.
Gao
,
L. H.
Wang
,
X.
Luo
,
W.
Cai
,
X. Z.
Lu
,
J. M.
Rondinelli
,
L. Q.
Chen
, and
S. W.
Cheong
, “
Domain topology and domain switching kinetics in a hybrid improper ferroelectric
,”
Nat. Commun.
7
,
11602
(
2016
).
92.
B.
Gao
,
F.-T.
Huang
,
Y.
Wang
,
J.-W.
Kim
,
L.
Wang
,
S.-J.
Lim
, and
S.-W.
Cheong
, “
Interrelation between domain structures and polarization switching in hybrid improper ferroelectric Ca3(Mn,Ti)2O7
,”
Appl. Phys. Lett.
110
,
222906
(
2017b
).
93.
M.
Liu
,
Y.
Zhang
,
L.-F.
Lin
,
L.
Lin
,
S.
Yang
,
X.
Li
,
Y.
Wang
,
S.
Li
,
Z.
Yan
,
X.
Wang
,
X.-G.
Li
,
S.
Dong
, and
J.-M.
Liu
, “
Direct observation of ferroelectricity in Ca3Mn2O7 and its prominent light absorption
,”
Appl. Phys. Lett.
113
,
022902
(
2018
).
94.
S.
Yoshida
,
K.
Fujita
,
H.
Akamatsu
,
O.
Hernandez
,
A. S.
Gupta
,
F. G.
Brown
,
H.
Padmanabhan
,
A. S.
Gibbs
,
T.
Kuge
,
R.
Tsuji
,
S.
Murai
,
J. M.
Rondinelli
,
V.
Gopalan
, and
K.
Tanaka
, “
Ferroelectric Sr3Zr2O7: Competition between hybrid improper ferroelectric and antiferroelectric mechanisms
,”
Adv. Funct. Mater.
28
,
1801856
(
2018a
).
95.
S.
Yoshida
,
H.
Akamatsu
,
R.
Tsuji
,
O.
Hernandez
,
H.
Padmanabhan
,
A. S.
Gupta
,
A. S.
Gibbs
,
K.
Mibu
,
S.
Murai
,
J. M.
Rondinelli
,
V.
Gopalan
,
K.
Tanaka
, and
K.
Fujita
, “
Hybrid Improper ferroelectricity in (Sr,Ca)3Sn2O7 and beyond: Universal relationship between ferroelectric transition temperature and tolerance factor in n = 2 Ruddlesden-Popper phases
,”
J. Am. Chem. Soc.
140
,
15690
15700
(
2018b
).
96.
M. W.
Lufaso
and
P. M.
Woodward
, “
Jahn-Teller distortions, cation ordering and octahedral tilting in perovskites
,”
Acta Crystallogr. B
60
,
10
20
(
2004
).
97.
A. T.
Mulder
,
N. A.
Benedek
,
J. M.
Rondinelli
, and
C. J.
Fennie
, “
Turning ABO3 antiferroelectrics into ferroelectrics: Design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 Ruddlesden-Popper compounds
,”
Adv. Funct. Mater.
23
,
4810
(
2013
).
98.
J. M.
Rondinelli
and
C. J.
Fennie
, “
Octahedral rotation-induced ferroelectricity in cation ordered perovskites
,”
Adv. Mater.
24
,
1961
1968
(
2012
).
99.
H. J.
Zhao
,
J.
Iniguez
,
W.
Ren
,
X. M.
Chen
, and
L.
Bellaiche
, “
Atomistic theory of hybrid improper ferroelectricity in perovskites
,”
Phys. Rev. B
89
,
174101
(
2014
).
100.
M.
Shaikh
,
A.
Fathima
,
M. J.
Swamynadhan
,
H.
Das
, and
S.
Ghosh
, “
Investigation into cation-ordered magnetic polar double perovskite oxides
,”
Chem. Mater.
33
,
1594
1606
(
2021
).
101.
X.-Z.
Lu
and
J. M.
Rondinelli
, “
Room temperature electric-field control of magnetism in layered oxides with cation order
,”
Adv. Funct. Mater.
27
,
1604312
(
2017
).
102.
S.
Vasala
and
M.
Karppinen
, “
A2BB O6 perovskites: A review
,”
Prog. Solid State Chem.
43
,
1
36
(
2015
).
103.
H.
Katsura
,
N.
Nagaosa
, and
A. V.
Balatsky
, “
Spin current and magnetoelectric effect in noncollinear magnets
,”
Phys. Rev. Lett.
95
,
057205
(
2005
).
104.
I. A.
Sergienko
,
C.
Sen
, and
E.
Dagotto
, “
Ferroelectricity in the magnetic E-phase of orthorhombic perovskites
,”
Phys. Rev. Lett
97
,
227204
(
2006
).
105.
H.
Murakawa
,
Y.
Onose
,
S.
Miyahara
,
N.
Furukawa
, and
Y.
Tokura
, “
Ferroelectricity induced by spin-dependent metal-ligand hybridization in Ba2CoGe2O7
,”
Phys. Rev. Lett.
105
,
137202
(
2010
).
106.
T.
Zhao
,
A.
Scholl
,
F.
Zavaliche
,
K.
Lee
,
M.
Barry
,
A.
Doran
,
M. P.
Cruz
,
Y. H.
Chu
,
C.
Ederer
,
N. A.
Spaldin
et al, “
Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature
,”
Nat. Mater.
5
,
823
(
2006
).
107.
C. J.
Fennie
, “
Ferroelectrically induced weak ferromagnetism by design
,”
Phys. Rev. Lett.
100
,
167203
(
2008
).
108.
F.
Wang
,
Y.
Zhou
,
X.
Shen
,
S.
Dong
, and
J.
Zhang
, “
Magnetoelectric coupling and cross control in two-dimensional ferromagnets
,”
Phys. Rev. Appl.
20
,
064011
(
2023b
).
109.
Y.
Zhou
,
H.
Ye
,
J.
Zhang
, and
S.
Dong
, “
Double-leaf riemann surface topological converse magnetoelectricity
,”
Phys. Rev. B
110
,
054424
(
2024
).
110.
G.
Sanchez-Santolino
,
V.
Rouco
,
S.
Puebla
,
H.
Aramberri
,
V.
Zamora
,
M.
Cabero
,
F. A.
Cuellar
,
C.
Munuera
,
F.
Mompean
,
M.
Garcia-Hernandez
,
A.
Castellanos-Gomez
,
J.
Iniguez
,
C.
Leon
, and
J.
Santamaria
, “
A 2D ferroelectric vortex pattern in twisted BaTiO3 freestanding layers
,”
Nature
626
,
529
534
(
2024
).
111.
E. A.
Nowadnick
and
C. J.
Fennie
, “
Domains and ferroelectric switching pathways in Ca3Ti2O7 from first principles
,”
Phys. Rev. B
94
,
104105
(
2016
).
112.
M.
Vizner Stern
,
Y.
Waschitz
,
W.
Cao
,
I.
Nevo
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Sela
,
M.
Urbakh
,
O.
Hod
, and
M.
Ben Shalom
, “
Interfacial ferroelectricity by van der Waals sliding
,”
Science
372
,
1462
1466
(
2021
).
113.
K.
Yasuda
,
X.
Wang
,
K.
Watanabe
,
T.
Taniguchi
, and
P.
Jarillo-Herrero
, “
Stacking-engineered ferroelectricity in bilayer boron nitride
,”
Science
372
,
1458
1462
(
2021
).
114.
X.
Wang
,
K.
Yasuda
,
Y.
Zhang
,
S.
Liu
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Hone
,
L.
Fu
, and
P.
Jarillo-Herrero
, “
Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides
,”
Nat. Nanotechnol.
17
,
367
371
(
2022
).
115.
L.
Rogee
,
L.
Wang
,
Y.
Zhang
,
S.
Cai
,
P.
Wang
,
M.
Chhowalla
,
W.
Ji
, and
S. P.
Lau
, “
Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides
,”
Science
376
,
973
978
(
2022
).
116.
Y.
Cao
,
V.
Fatemi
,
S.
Fang
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
, and
P.
Jarillo-Herrero
, “
Unconventional superconductivity in magic-angle graphene superlattices
,”
Nature
556
,
43
50
(
2018
).
117.
A. L.
Sharpe
,
E. J.
Fox
,
A. W.
Barnard
,
J.
Finney
,
K.
Watanabe
,
T.
Taniguchi
,
M. A.
Kastner
, and
D.
Goldhaber-Gordon
, “
Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene
,”
Science
365
,
605
608
(
2019
).
118.
E. Y.
Andrei
and
A. H.
MacDonald
, “
Graphene bilayers with a twist
,”
Nat. Mater.
19
,
1265
1275
(
2020
).
119.
A.
Ciarrocchi
,
F.
Tagarelli
,
A.
Avsar
, and
A.
Kis
, “
Excitonic devices with van der Waals heterostructures: Valleytronics meets twistronics
,”
Nat. Rev. Mater.
7
,
449
464
(
2022
).
120.
S.
Carr
,
D.
Massatt
,
S.
Fang
,
P.
Cazeaux
,
M.
Luskin
, and
E.
Kaxiras
, “
Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle
,”
Phys. Rev. B
95
,
075420
(
2017
).
121.
Z.
Zheng
,
Q.
Ma
,
Z.
Bi
,
S.
de la Barrera
,
M.-H.
Liu
,
N.
Mao
,
Y.
Zhang
,
N.
Kiper
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Kong
,
W. A.
Tisdale
,
R.
Ashoori
,
N.
Gedik
,
L.
Fu
,
S.-Y.
Xu
, and
P.
Jarillo-Herrero
, “
Unconventional ferroelectricity in moire heterostructures
,”
Nature
588
,
71
76
(
2020
).
122.
T.
Han
,
Z.
Lu
,
G.
Scuri
,
J.
Sung
,
J.
Wang
,
T.
Han
,
K.
Watanabe
,
T.
Taniguchi
,
L.
Fu
,
H.
Park
, and
L.
Ju
, “
Orbital multiferroicity in pentalayer rhombohedral graphene
,”
Nature
623
,
41
47
(
2023
).
You do not currently have access to this content.