We report operando measurements of the Li-ion distribution in the anode and cathode of a coin-type all-solid-state battery in the charged and discharged states via Compton scattering using high-energy synchrotron radiation x-ray analysis. From the line shape pattern analysis of the Compton scattering x-ray spectrum, we accurately observed the Li-ion distribution within the cathode and anode during the charging/discharging of a real coin-shaped battery in an SUS casing. This study discusses the difference in Li-ion distribution between the cathode and anode and compares the Li-ion distribution of the battery after 20 charge–discharge cycles with those of a fresh battery.

1.
A.
Manthiram
, “
An outlook on lithium ion battery technology
,”
ACS Cent. Sci.
3
,
1063
1069
(
2017
).
2.
C.
Wang
,
J.
Liang
,
J. T.
Kim
, and
X.
Sun
, “
Prospects of halide-based all-solid-state batteries: From material design to practical application
,”
Sci. Adv.
8
,
eadc9516
(
2022
).
3.
Y.
Li
,
S.
Song
,
H.
Kim
,
K.
Nomoto
,
H.
Kim
,
X.
Sun
,
S.
Hori
,
K.
Suzuki
,
N.
Matsui
,
M.
Hirayama
,
T.
Mizoguchi
,
T.
Saito
,
T.
Kamiyama
, and
R.
Kanno
, “
A lithium superionic conductor for millimeter-thick battery electrode
,”
Science
381
,
50
53
(
2023
).
4.
X. J.
Haruyama
,
K.
Sodeyama
,
L.
Han
,
K.
Takada
, and
Y.
Tateyama
, “
Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery
,”
Chem. Mater.
26
,
4248
4255
(
2014
).
5.
Y.
Yamagishi
,
H.
Morita
,
Y.
Nomura
, and
E.
Igaki
, “
Visualizing lithiation of graphite composite anodes in all-solid-state batteries using operando time-of-flight secondary ion mass spectrometry
,”
J. Phys. Chem. Lett.
12
,
4623
4627
(
2021
).
6.
G.
Hasegawa
,
N.
Kuwata
,
T.
Ohnishi
, and
K.
Takada
, “
Visualization and evaluation of lithium diffusion at grain boundaries in Li0.29La0.57TiO3 solid electrolytes using secondary ion mass spectrometry
,”
J. Mater. Chem. A.
12
,
731
(
2024
).
7.
H.
Masuda
,
N.
Ishida
,
Y.
Ogata
,
D.
Ito
, and
D.
Fujita
, “
Internal potential mapping of charged solid-state-lithium ion batteries using in situ Kelvin probe force microscopy
,”
Nanoscale
9
,
893
(
2017
).
8.
H.
Masuda
,
K.
Matsushita
,
D.
Ito
,
D.
Fujita
, and
N.
Ishida
, “
Dynamically visualizing battery reactions by operando Kelvin probe force microscopy
,”
Commun. Chem.
2
,
140
(
2019
).
9.
S.
Taminato
,
M.
Yonemura
,
S.
Shiotani
,
T.
Kamiyama
,
S.
Torii
,
M.
Nagao
,
Y.
Ishikawa
,
K.
Mori
,
T.
Fukunaga
,
Y.
Onodera
,
T.
Naka
,
M.
Morishima
,
Y.
Ukyo
,
D.
Sulistyanintyas Adipranoto
,
H.
Arai
,
Y.
Uchimoto
,
Z.
Ogumi
,
K.
Suzuki
,
M.
Hirayama
, and
R.
Kanno
, “
Real-time observations of lithium battery reactions—operando neutron diffraction analysis during practical operation
,”
Sci. Rep.
6
,
28843
(
2016
).
10.
T.
Kobayashi
,
T.
Ohnishi
,
T.
Osawa
,
A.
Pratt
,
S.
Tear
,
S.
Shimoda
,
H.
Baba
,
M.
Laitinen
, and
T.
Sajavaara
, “
In-operando lithium-ion transport tracking in an all-solid-state battery
,”
Small
18
,
2204455
(
2022
).
11.
R.
Bradbury
,
N.
Kardjilov
,
G. F.
Dewald
,
A.
Tengattini
,
L.
Helfen
,
W. G.
Zeier
, and
I.
Manke
, “
Visualizing lithium ion transport in solid-state Li-S batteries using 6Li contrast enhanced neutron imaging
,”
Adv. Funct. Mater.
33
,
2302619
(
2023
).
12.
M.
Itou
,
Y.
Orikasa
,
Y.
Gogyo
,
K.
Suzuki
,
H.
Sakurai
,
Y.
Uchimoto
, and
Y.
Sakurai
, “
Compton scattering imaging of a working battery using synchrotron high-energy X-rays
,”
J. Synchrotron Rad.
22
,
161
164
(
2015
).
13.
K.
Suzuki
,
B.
Barbiellini
,
Y.
Orikasa
,
S.
Kaprzyk
,
M.
Itou
,
K.
Yamamoto
,
Y. J.
Wang
,
H.
Hafiz
,
Y.
Uchimoto
,
A.
Bansil
,
Y.
Sakurai
, and
H.
Sakurai
, “
Non-destructive measurement of in-operando lithium concentration in batteries via x-ray compton scattering
,”
J. Appl. Phys.
119
,
025103
(
2016
).
14.
K.
Suzuki
,
A.
Suzuki
,
T.
Ishikawa
,
M.
Itou
,
H.
Yamashige
,
Y.
Orikasa
,
Y.
Uchimoto
,
Y.
Sakurai
, and
H.
Sakurai
, “
In operando quantitation of Li concentration for a commercial Li-ion rechargeable battery using high-energy X-ray Compton scattering
,”
J. Synchrotron Rad.
24
,
1006
1011
(
2017
).
15.
K.
Suzuki
,
R.
Kanai
,
N.
Tsuji
,
H.
Yamashige
,
Y.
Orikasa
,
Y.
Uchimoto
,
Y.
Sakurai
, and
H.
Sakurai
, “
Dependency of the charge? Discharge rate on lithium reaction distributions for a commercial lithium coin cell visualized by Compton scattering imaging
,”
Condens. Mater
3
,
27
(
2018
).
16.
K.
Suzuki
,
A.-P.
Honkanen
,
N.
Tsuji
,
K.
Jalkanen
,
J.
Koskinen
,
H.
Morimoto
,
D.
Hiramoto
,
A.
Terasaka
,
H.
Hafiz
,
Y.
Sakurai
,
M.
Kanninen
,
S.
Huotari
,
A.
Bansil
,
H.
Sakurai
, and
B.
Barbiellini
, “
High-energy x-ray Compton scattering imaging of 18650-type lithium-ion battery cell
,”
Condens. Mater
4
,
66
(
2019
).
17.
K.
Suzuki
,
Y.
Otsuka
,
N.
Tsuji
,
K.
Hoshi
,
Y.
Sakurai
, and
H.
Sakurai
, “
Identifying the degradation mechanism in commercial lithium rechargeable batteries via high-energy x-ray Compton scattering imaging
,”
Appl. Sci.
10
,
5855
(
2020
).
18.
K.
Suzuki
,
S.
Suzuki
,
Y.
Otsuka
,
N.
Tsuji
,
K.
Jalkanen
,
J.
Koskinen
,
K.
Hoshi
,
A.-P.
Honkanen
,
H.
Hafiz
,
Y.
Sakurai
,
M.
Kanninen
,
S.
Huotari
,
A.
Bansil
,
H.
Sakurai
, and
B.
Barbiellini
, “
Redox oscillations in 18650-type lithium-ion cell revealed by in operando Compton scattering imaging
,”
Appl. Phys. Lett.
118
,
161902
(
2021
).
19.
C.
Huang
,
M. D.
Wilson
,
B.
Cline
,
A.
Sivarajah
,
W.
Stolp
,
M. N.
Boone
,
T.
Connolley
, and
C. L. A.
Leung
, “
Correlating lithium-ion transport and interfacial lithium microstructure evolution in solid-state batteries during the first cycle
,”
Cell Rep. Phys. Sci.
5
,
101995
(
2024
).
20.
M. J.
Cooper
,
P. E.
Mijnarends
,
N.
Shiotani
,
N.
Sakai
, and
A.
Bansil
,
X-Ray Compton Scattering
(
Oxford University Press
,
2004
), pp.
31
39
.
You do not currently have access to this content.