Continuous miniaturization of electronic components puts higher demands on the heat dissipation of the micro-systems, which requires environmental friendliness, good heat exchange capability, and high-performance micro-refrigeration materials. Here, we developed a Ni–Mn–Fe–In microwire fabricated by the Taylor–Ulitovsky method, showing 001A orientation close to the axial direction of microwire. Due to the large volume change ΔV/V (−1.24%), the large entropy change ΔStr of 43.6 J kg−1 K−1 was achieved in the microwire. Owing to the low driving force of the microwire with a single crystalline of 001A orientation close to the axial direction of microwire, large adiabatic temperature change of −5.7 K was achieved at room temperature after removing a low stress of 120 MPa. Thus, high specific adiabatic temperature change of 47.5 K/GPa was obtained in the microwire, which is the highest value among all the reported low-dimension elastocaloric materials, including thin films/foils, microwires/wires, and ribbons. The outstanding comprehensive properties give this microwire a great application potential in miniaturization and compactness of refrigeration devices.

1.
M.
Imran
and
X.
Zhang
,
Mater. Des.
195
,
109030
(
2020
).
2.
J.
Chen
,
L.
Lei
, and
G.
Fang
,
Mater. Today Commun.
28
,
102706
(
2021
).
3.
J.
Tušek
,
K.
Engelbrecht
,
R.
Millan-Solsona
,
L.
Mañosa
,
E.
Vives
,
L.
Mikkelsen
, and
N.
Pryds
,
Adv. Eng. Mater.
5
(
13
),
1500361
(
2015
).
4.
T.
Krenke
,
E.
Duman
,
M.
Acet
,
E. F.
Wassermann
,
X.
Moya
,
L.
Mañosa
, and
A.
Planes
,
Nat. Mater.
4
(
6
),
450
(
2005
).
5.
L.
Mañosa
,
D.
Gonzalez-Alonso
,
A.
Planes
,
E.
Bonnot
,
M.
Barrio
,
J. L.
Tamarit
,
S.
Aksoy
, and
M.
Acet
,
Nat. Mater.
9
(
6
),
478
(
2010
).
6.
Y.
Liu
,
J. F.
Scott
, and
B.
Dkhil
,
Appl. Phys. Rev.
3
(
3
),
031102
(
2016
).
7.
R. Z. W.
Goetzler
,
J.
Young
, and
C.
Johnson
,
Rep. U.S. Dept. Energy
OSTI Technical Report (
2014
).
8.
D. Y.
Cong
,
W. X.
Xiong
,
A.
Planes
,
Y.
Ren
,
L.
Mañosa
,
P. Y.
Cao
,
Z. H.
Nie
,
X. M.
Sun
,
Z.
Yang
,
X. F.
Hong
, and
Y. D.
Wang
,
Phys. Rev. Lett.
122
(
25
),
255703
(
2019
).
9.
H.
Ossmer
,
F.
Lambrecht
,
M.
Gültig
,
C.
Chluba
,
E.
Quandt
, and
M.
Kohl
,
Acta Mater.
81
,
9
(
2014
).
10.
Y.
Cheng
and
C.-H.
Chen
,
J. Alloys Compd.
968
,
171990
(
2023
).
11.
Z.
Yang
,
D.
Cong
,
Y.
Yuan
,
R.
Li
,
H.
Zheng
,
X.
Sun
,
Z.
Nie
,
Y.
Ren
, and
Y.
Wang
,
Appl. Mater. Today
21
,
100844
(
2020
).
12.
B.
Yuan
,
X.
Zhu
,
X.
Zhang
, and
M.
Qian
,
J. Mater. Sci.
54
(
13
),
9613
(
2019
).
13.
L.
Manosa
,
S.
Jarque-Farnos
,
E.
Vives
, and
A.
Planes
,
Appl. Phys. Lett.
103
,
211904
(
2013
).
14.
N.-H.
Lu
and
C.-H.
Chen
,
Mater. Sci. Eng. A
800
,
140386
(
2021
).
15.
X.
Zhang
,
N.
Xu
,
J.
Yang
,
Y.
Niu
,
Y.
Cao
,
D.
Cong
,
H.
Chen
, and
Y.-D.
Wang
,
Mater. Lett.
362
,
136165
(
2024
).
16.
Y.
Niu
,
H.
Chen
,
X.
Zhang
,
S.
Li
,
D.
Cong
,
T.
Ma
,
S.
Li
,
J.
Lin
, and
Y.-D.
Wang
,
Scr. Mater.
204
,
114123
(
2021
).
17.
E.
Villa
,
F.
Villa
,
B. R.
Crespo
,
P.
Lazpita
,
D.
Salazar
,
H.
Hosoda
, and
V.
Chernenko
,
J. Alloys Compd.
965
,
171437
(
2023
).
18.
Z.
Li
,
Z.
Li
,
D.
Li
,
J.
Yang
, and
L.
Zuo
,
Appl. Phys. Lett.
115
(
8
),
083903
(
2019
).
19.
J.
Yang
,
H.
Wang
,
Z.
Li
,
N.
Zou
,
H.
Yan
,
B.
Yang
, and
L.
Zuo
,
Acta Mater.
263
,
119546
(
2024
).
20.
M.
Imran
and
X.
Zhang
,
Mater. Des.
206
,
109784
(
2021
).
21.
C.
Bechtold
,
C.
Chluba
,
R.
Lima de Miranda
, and
E.
Quandt
,
Appl. Phys. Lett.
101
(
9
),
091903
(
2012
).
22.
S. Y.
Fedotov
,
E. V.
Morozov
,
V. V.
Koledov
,
V. G.
Shavrov
, and
A. V.
Shelyakov
,
Bull. Russ. Acad. Sci. Phys.
81
(
11
),
1374
(
2017
).
23.
X.
Zhang
,
M.
Qian
,
X.
Zhu
,
C.
Shang
, and
L.
Geng
,
APL Mater.
6
(
3
),
036102
(
2018
).
24.
X.
Zhu
,
X.
Zhang
, and
M.
Qian
,
AIP Adv.
8
(
12
),
125002
(
2018
).
25.
J.
Cui
,
Y.
Wu
,
J.
Muehlbauer
,
Y.
Hwang
,
R.
Radermacher
,
S.
Fackler
,
M.
Wuttig
, and
I.
Takeuchi
,
Appl. Phys. Lett.
101
(
7
),
073904
(
2012
).
26.
B.
Yuan
,
S.
Zhong
,
M.
Qian
,
X.
Zhang
, and
L.
Geng
,
J. Alloys Compd.
850
,
156612
(
2021
).
27.
B.
Yuan
,
M.
Qian
,
X.
Zhang
, and
L.
Geng
,
Scr. Mater.
178
,
356
(
2020
).
28.
F.
Bruederlin
,
L.
Bumke
,
C.
Chluba
,
H.
Ossmer
,
E.
Quandt
, and
M.
Kohl
,
Energy Technol.
6
(
8
),
1588
(
2018
).
29.
F.
Bruederlin
,
H.
Ossmer
,
F.
Wendler
,
S.
Miyazaki
, and
M.
Kohl
,
J. Phys. D: Appl. Phys.
50
(
42
),
424003
(
2017
).
30.
L.
Bumke
,
C.
Zamponi
,
J.
Jetter
, and
E.
Quandt
,
J. Appl. Phys.
127
(
22
),
225105
(
2020
).
31.
J.
Liu
,
T. G.
Woodcock
,
N.
Scheerbaum
, and
O.
Gutfleisch
,
Acta Mater.
57
(
16
),
4911
(
2009
).
32.
H.
Chiriac
and
T. A.
Óvári
,
Prog. Mater. Sci.
40
(
5
),
333
(
1996
).
33.
H.
Wang
,
D.
Li
,
G.
Zhang
,
Z.
Li
,
B.
Yang
,
H.
Yan
,
D.
Cong
,
C.
Esling
,
X.
Zhao
, and
L.
Zuo
,
Intermetallics
140
,
107379
(
2022
).
34.
J.
Fornell
,
N.
Tuncer
, and
C. A.
Schuh
,
J. Alloys Compd.
693
,
1205
(
2017
).
35.
Z.
Chen
,
D.
Cong
,
X.
Sun
,
Y.
Zhang
,
H.
Yan
,
S.
Li
,
R.
Li
,
Z.
Nie
,
Y.
Ren
, and
Y.
Wang
,
IUCrJ
6
(
5
),
843
(
2019
).
36.
H.
Chen
,
Y.-D.
Wang
,
Z.
Nie
,
R.
Li
,
D.
Cong
,
W.
Liu
,
F.
Ye
,
Y.
Liu
,
P.
Cao
,
F.
Tian
,
X.
Shen
,
R.
Yu
,
L.
Vitos
,
M.
Zhang
,
S.
Li
,
X.
Zhang
,
H.
Zheng
,
J. F.
Mitchell
, and
Y.
Ren
,
Nat. Mater.
19
(
7
),
712
(
2020
).
37.
Z.
Chen
,
Y.
Zhang
,
L.
Wang
,
D.
Cong
, and
X.
Sun
,
Appl. Phys. Lett.
125
(
2
),
023102
(
2024
).
38.
M.
Vázquez
,
H.
Chiriac
,
A.
Zhukov
,
L.
Panina
, and
T.
Uchiyama
,
Phys. Status Solidi A
208
(
3
),
493
(
2011
).
39.
E.
Stern-Taulats
,
A.
Planes
,
P.
Lloveras
,
M.
Barrio
,
J.-L.
Tamarit
,
S.
Pramanick
,
S.
Majumdar
,
S.
Yüce
,
B.
Emre
,
C.
Frontera
, and
L.
Mañosa
,
Acta Mater.
96
,
324
(
2015
).
40.
C. O.
Aguilar-Ortiz
,
D.
Soto-Parra
,
P.
Álvarez-Alonso
,
P.
Lázpita
,
D.
Salazar
,
P. O.
Castillo-Villa
,
H.
Flores-Zúñiga
, and
V. A.
Chernenko
,
Acta Mater.
107
,
9
(
2016
).
41.
V.
Recarte
,
M.
Zbiri
,
M.
Jiménez-Ruiz
,
V.
Sánchez-Alarcos
, and
J. I.
Pérez-Landazábal
,
J. Phys. Condens. Mater.
28
(
20
),
205402
(
2016
).
42.
B.
Yuan
,
M.
Qian
,
X.
Zhang
,
M.
Imran
, and
L.
Geng
,
Int. J. Refrig.
114
,
54
(
2020
).
43.
X.
Zhu
,
M.
Qian
,
X.
Zhang
,
S.
Zhong
,
Z.
Jia
,
R.
Zhang
,
A.
Li
, and
L.
Geng
,
J. Alloys Compd.
956
,
170291
(
2023
).
44.
J.
Tušek
,
K.
Engelbrecht
,
L. P.
Mikkelsen
, and
N.
Pryds
,
J. Appl. Phys.
117
(
12
),
124901
(
2015
).
45.
X.
Liang
,
F.
Xiao
,
M.
Jin
,
X.
Jin
,
T.
Fukuda
, and
T.
Kakeshita
,
Scr. Mater.
134
,
42
(
2017
).
46.
F.
Xiao
,
Z.
Li
,
H.
Chen
,
Z.
Li
,
K.
Huang
,
X.
Jin
, and
T.
Fukuda
,
Materialia
9
,
100547
(
2020
).
47.
C.
Chluba
,
W.
Ge
,
R. L.
de Miranda
,
J.
Strobel
,
L.
Kienle
,
E.
Quandt
, and
M.
Wuttig
,
Science
348
(
6238
),
1004
(
2015
).
48.
H.
Ossmer
,
C.
Chluba
,
M.
Gueltig
,
E.
Quandt
, and
M.
Kohl
,
Shap. Mem. Superelasticity
1
,
142
(
2015
).
49.
H.
Ossmer
,
S.
Miyazaki
, and
M.
Kohl
,
Mater. Today Proc.
2
,
S971
(
2015
).
50.
C.
Chluba
,
H.
Ossmer
,
C.
Zamponi
,
M.
Kohl
, and
E.
Quandt
,
Shap. Mem. Superelasticity
2
,
95
(
2016
).
51.
L.
Bumke
,
C.
Chluba
,
H.
Ossmer
,
C.
Zamponi
,
M.
Kohl
, and
E.
Quandt
,
Phys. Status Solidi B
255
(
2
),
1700299
(
2018
).
52.
G.
Ulpiani
,
F.
Bruederlin
,
R.
Weidemann
,
G.
Ranzi
,
M.
Santamouris
, and
M.
Kohl
,
Appl. Therm. Eng.
180
,
115867
(
2020
).
53.
L. W.
Tseng
,
J.
Ma
,
S. J.
Wang
,
I.
Karaman
,
M.
Kaya
,
Z. P.
Luo
, and
Y. I.
Chumlyakov
,
Acta Mater.
89
,
374
(
2015
).
54.
A. M.
Pérez-Sierra
,
J.
Pons
,
R.
Santamarta
,
P.
Vermaut
, and
P.
Ochin
,
Acta Mater.
93
,
164
(
2015
).
55.
W.
Sun
,
J.
Liu
,
D.
Zhao
, and
M.
Zhang
,
J. Phys. D: Appl. Phys.
50
(
44
),
444001
(
2017
).
You do not currently have access to this content.