This study investigates the propagation characteristics of spin waves in an yttrium iron garnet waveguide using a vector network analyzer and a real-time oscilloscope. We confirm the propagation of backward volume magnetostatic spin waves in the linear regime. Solitary spin-wave formation was observed, and the transition from linear to nonlinear response was verified by establishing a threshold power. In the nonlinear regime, collision experiments between two spin waves were conducted, revealing a dependence of attenuation on the input carrier frequency. A comparison with the transmission loss curve confirms the correlation between attenuation and the position of “frequency regions with strong dispersion.” Notably, only within a specific frequency range among these regions do the colliding spin waves maintain their shapes and momenta, passing through each other without dissipation. This remarkable phenomenon is crucial for dissipation-free information transfer. Our findings offer valuable insights into spin-wave behavior, particularly for developing spin-wave-based logic and long-distance magnonic soliton information transfer.

1.
V. V.
Kruglyak
,
S. O.
Demokritov
, and
D.
Grundler
, “
Magnonics
,”
J. Phys. D: Appl. Phys.
43
,
264001
(
2010
).
2.
K.
Sekiguchi
,
K.
Yamada
,
S. M.
Seo
,
K. J.
Lee
,
D.
Chiba
,
K.
Kobayashi
, and
T.
Ono
, “
Nonreciprocal emission of spin-wave packet in FeNi film
,”
Appl. Phys. Lett.
97
,
022508
(
2010
).
3.
F.
Macia
,
A. D.
Kent
, and
F. C.
Hoppensteadt
, “
Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation
,”
Nanotechnology
22
,
095301
(
2011
).
4.
B.
Lenk
,
H.
Ulrichs
,
F.
Garbs
, and
M.
Munzenberg
, “
The building blocks of magnonics
,”
Phys. Rep.
507
,
107
(
2011
).
5.
S. A.
Wolf
,
D. D.
Awschalom
,
R. A.
Buhrman
,
J. M.
Daughton
,
S. V.
Molnar
,
M. L.
Roukes
,
A. Y.
Chtchelkanova
, and
D. M.
Treger
, “
Spintronics: A spin-based electronics vision for the future
,”
Science
294
,
1488
(
2001
).
6.
S. D.
Bader
and
S. S. P.
Parkin
, “
Spintronics
,”
Annu. Rev. Condens. Matter Phys.
1
,
71
(
2010
).
7.
K.
Sekiguchi
,
S. W.
Lee
,
H.
Sukegawa
,
N.
Sato
,
S. H.
Oh
,
R. D.
McMichael
, and
K. J.
Lee
, “
Spin-wave propagation in cubic anisotropic materials
,”
NPG Asia Mater.
9
,
e392
(
2017
).
8.
A.
Mahmoud
,
F.
Ciubotaru
,
F.
Vanderveken
,
A. V.
Chumak
,
S.
Hamdioui
,
C.
Adelmann
, and
S.
Cotofana
, “
Introduction to spin wave computing
,”
J. Appl. Phys.
128
,
161101
(
2020
).
9.
T.
Schneider
,
A. A.
Serga
,
B.
Leven
,
B.
Hillebrands
,
R. L.
Stamps
, and
M. P.
Kostylev
, “
Realization of spin-wave logic gates
,”
Appl. Phys. Lett.
92
,
022505
(
2008
).
10.
S.
Klingler
,
P.
Pirro
,
T.
Brächer
,
B.
Leven
,
B.
Hillebrands
, and
A. V.
Chumak
, “
Design of a spin-wave majority gate employing mode selection
,”
Appl. Phys. Lett.
105
,
152410
(
2014
).
11.
K.-S.
Lee
and
S.-K.
Kim
, “
Conceptual design of spin wave logic gates based on a Mach–Zehnder-type spin wave interferometer for universal logic functions
,”
J. Appl. Phys.
104
,
053909
(
2008
).
12.
N.
Kanazawa
,
T.
Goto
,
K.
Sekiguchi
,
A. B.
Granovsky
,
C. A.
Ross
,
H.
Takagi
,
Y.
Nakamura
,
H.
Uchida
, and
M.
Inoue
, “
The role of Snell's law for a magnonic majority gate
,”
Sci. Rep.
7
,
7898
(
2017
).
13.
M.
Balynskiy
,
H.
hiang
,
D.
Gutierrez
,
A.
Kozhevnikov
,
Y.
Filimonov
, and
A.
Khitun
, “
Reversible magnetic logic gates based on spin wave interference
,”
J. Appl. Phys.
123
,
144501
(
2018
).
14.
W.
Yu
,
J.
Lan
, and
J.
Xiao
, “
Magnetic logic gate based on polarized spin waves
,”
Phys. Rev. Appl.
13
,
024055
(
2020
).
15.
A.
Khitun
and
K. L.
Wang
, “
Non-volatile magnonic logic circuits engineering
,”
J. Appl. Phys.
110
,
034306
(
2011
).
16.
R.
Nakane
,
G.
Tanaka
, and
A.
Hirose
, “
Reservoir computing with spin waves excited in a garnet film
,”
IEEE Access
6
,
4462
(
2018
).
17.
S.
Watt
and
M.
Kostylev
, “
Reservoir computing using a spin-wave delay-line active-ring resonator based on yttrium-iron-garnet film
,”
Phys. Rev. Appl.
13
,
034057
(
2020
).
18.
S.
Watt
,
M.
Kostylev
, and
A. B.
Ustinov
, “
Enhancing computational performance of a spin-wave reservoir computer with input synchronization
,”
J. Appl. Phys.
129
,
044902
(
2021
).
19.
A. N.
Slavin
,
O.
Büttner
,
M.
Bauer
,
S. O.
Demokritov
,
B.
Hillebrands
,
M. P.
Kostylev
,
B. A.
Kalinikos
,
V. V.
Grimalsky
, and
Y.
Rapoport
, “
Collision properties of quasi-one-dimensional spin wave solitons and two-dimensional spin wave bullets
,”
Chaos
13
,
693
701
(
2003
).
20.
B. A.
Kalinikos
,
N. G.
Kovshikov
, and
A. N.
Slavin
, “
Envelope solitons and modulation instability of dipole-exchange magnetization waves in yttrium iron garnet films
,”
Sov. Phys. JETP
67
(
2
),
303
(
1988
).
21.
M.
Wu
and
B. A.
Kalinikos
, “
Coupled modulational instability of copropagating spin waves in magnetic thin films
,”
Phys. Rev. Lett.
101
,
027206
(
2008
).
22.
A. B.
Ustinov
,
V. E.
Demidov
,
A. V.
Kondrashov
,
B. A.
Kalinikos
, and
S. O.
Demokritov
, “
Observation of the chaotic spin-wave soliton trains in magnetic films
,”
Phys. Rev. Lett.
106
,
017201
(
2011
).
23.
M.
Wu
,
B. A.
Kalinikos
, and
C. E.
Patton
, “
Generation of dark and bright spin wave envelope soliton trains through self-modulational instability in magnetic films
,”
Phys. Rev. Lett.
93
,
157207
(
2004
).
24.
T.
Eguchi
,
M.
Kawase
, and
K.
Sekiguchi
, “
High-density spin-wave soliton train
,”
Appl. Phys. Express
15
,
083001
(
2022
).
25.
M.
Chen
,
M. A.
Tsankov
,
J. M.
Nash
, and
C. E.
Patton
, “
Backward-volume-wave microwave-envelope solitons in yttrium iron garnet films
,”
Phys. Rev. B
49
,
12773
(
1994
).
26.
M.
Kawase
,
M.
Iwaba
, and
K.
Sekiguchi
, “
Electric detection of nonlinear effect upon spin wave spin current
,”
Jpn. J. Appl. Phys.
59
,
SEED01
(
2020
).
27.
N. G.
Kovshikov
,
B. A.
Kalinikos
,
C. E.
Patton
,
E. S.
Wright
, and
J. M.
Nash
, “
Formation, propagation, refection, and collision of microwave envelope solitons in yttrium iron garnet films
,”
Phys. Rev. B
54
,
15210
(
1996
).
28.
P.
De Gasperis
,
R.
Marcelli
, and
G.
Miccoli
, “
Magnetostatic soliton propagation at microwave frequency in magnetic garnet films
,”
Phys. Rev. Lett.
59
,
481
(
1987
).
29.
R.
Furukawa
,
S.
Nezu
,
T.
Eguchi
, and
K.
Sekiguchi
, “
Mode-dependent magnonic noise
,”
NPG Asia Mater.
16
,
2
(
2024
).
30.
J. S.
Harms
and
R. A.
Duine
, “
Theory of the dipole-exchange spin wave spectrum in ferromagnetic films with in-plane magnetization revisited
,”
J. Magn. Magn. Mater.
557
,
169426
(
2022
).
31.
B. A.
Kalinikos
and
A. N.
Slavin
, “
Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions
,”
J. Phys. C: Solid State Phys.
19
,
7013
(
1986
).
32.
M. J.
Lighthill
, “
Contributions to the theory of waves in non-linear dispersive systems
,”
IMA J. Appl. Math.
1
,
3
(
1965
).
33.
J. Q.
Anderson
,
P. A.
Praveen Janantha
,
D. A.
Alcala
,
M.
Wu
, and
L. D.
Carr
, “
Physical realization of complex dynamical pattern formation in magnetic active feedback rings
,”
New J. Phys.
24
,
033018
(
2022
).
34.
R. W.
Damon
and
J. R.
Eshbach
, “
Magnetostatic modes of a ferromagnet slab
,”
J. Phys. Chem. Solids
19
,
308
(
1961
).
35.
K. Y.
Guslienko
,
R. W.
Chantrell
, and
A. N.
Slavin
, “
Dipolar localization of quantized spin-wave modes in thin rectangular magnetic elements
,”
Phys. Rev. B
68
,
024422
(
2003
).
You do not currently have access to this content.