The localized surface plasmon resonance (LSPR) effect induced by metal nanoparticles (NPs) can solve the problem of low light absorption in two-dimensional (2D) materials limited by atomic scale. However, the accompanying problem is the rise in dark current due to plenty of electrons from metal NPs injecting into the 2D materials, which decreases the performance of plasmonic photodetectors. Here, we designed the structure of Al NPs coated with Al2O3 by low temperature oxidation treatment method to balance the dilemma between high photoresponse and low dark current. Raman spectrum and finite-difference time-domain simulations were used to verify that Al2O3 does not affect the LSPR effect of Al NPs. Compared to that of the pristine MoS2/Al photodetector, the MoS2/Al@Al2O3 plasmonic photodetector achieved a fourfold decrease in dark current, threefold increase in detectivity, and 1.5-fold increase in responsivity. As a result, the optimized plasmonic device achieves a high responsivity of ∼1719 A/W, an excellent detectivity of ∼6.0 × 1011 Jones, and an ultra-fast response speed of ∼15 ns. Our work reveals that constructing metal NPs covered by ultra-thin oxide layer is a feasible strategy for plasmonic photodetectors to decrease dark current and achieve high performance index.

1.
O.
Samy
,
S.
Zeng
,
M. D.
Birowosuto
, and
A. E.
Moutaouakil
,
Crystals
11
(
4
),
355
(
2021
).
2.
A.
Taffelli
,
S.
Dirè
,
A.
Quaranta
, and
L.
Pancheri
,
MDPI
21
(
8
),
2758
(
2021
).
4.
H.
Wang
,
S.
Li
,
R.
Ai
,
H.
Huang
,
L.
Shao
, and
J.
Wang
,
Nanoscale
12
,
8095
8108
(
2020
).
5.
N.
Patra
,
M.
Manikandan
,
V.
Singh
, and
I. A.
Palani
,
J. Lumin.
238
,
118331
(
2021
).
6.
J.
Lu
,
C.
Xu
,
J.
Dai
,
J.
Li
,
Y.
Wang
,
Y.
Lin
, and
P.
Li
,
Nanoscale
7
,
3396
3403
(
2015
).
7.
H.
Huang
,
J.
Lai
,
J.
Lu
, and
Z.
Li
,
Appl. Phys. A
127
,
679
(
2021
).
8.
H.
Wang
,
X.
Wang
,
Y.
Chen
,
S.
Zhang
,
W.
Jiang
,
X.
Zhang
,
J.
Qin
,
J.
Wang
,
X.
Li
,
Y.
Pan
,
F.
Liu
,
Z.
Shi
,
H.
Zhang
,
L.
Tu
,
H.
Wang
,
H.
Long
,
D.
Li
,
T.
Lin
,
J.
Wang
,
Y.
Zhan
,
H.
Shen
,
X.
Meng
, and
J.
Chu
,
Adv. Opt. Mater.
8
(
6
),
1901402
(
2020
).
9.
R.
Tian
,
X.
Gan
,
C.
Li
,
X.
Chen
,
S.
Hu
, and
L.
Gu
,
Light: Sci. Appl.
11
,
101
(
2022
).
10.
X.
Sun
,
J.
Sun
,
J.
Xu
,
Z.
Li
,
R.
Li
,
Z.
Yang
,
F.
Ren
,
Y.
Jia
, and
F.
Chen
,
Small
17
(
35
),
2102351
(
2021
).
11.
J.
Li
,
C.
Nie
,
F.
Sun
,
L.
Tang
,
Z.
Zhang
,
J.
Zhang
,
Y.
Zhao
,
J.
Shen
,
S.
Feng
,
H.
Shi
, and
X.
Wei
,
ACS Appl. Mater. Interfaces
12
,
8429
8436
(
2020
).
12.
L.
Goswami
,
N.
Aggarwal
,
S.
Krishna
,
M.
Singh
,
P.
Vashishtha
,
S. P.
Singh
,
S.
Husale
,
R.
Pandey
, and
G.
Gupta
,
ACS Omega
5
,
14535
14542
(
2020
).
13.
P.
Chen
,
J.
Hu
,
M.
Yin
,
W.
Bai
,
X.
Chen
, and
Y.
Zhang
,
ACS Appl. Nano Mater.
4
,
5981
5991
(
2021
).
14.
Y.
Yu
,
Z.
Ji
,
S.
Zu
,
B.
Du
,
Y.
Kang
,
Z.
Li
,
Z.
Zhou
,
K.
Shi
, and
Z.
Fang
,
Adv. Funct. Mater.
26
(
35
),
6394
6401
(
2016
).
15.
S.
Jeon
,
J.
Jia
,
J. H.
Ju
, and
S.
Lee
,
Appl. Phys. Lett.
115
,
183102
(
2019
).
16.
X.
Zhang
,
Q.
Liu
,
B.
Liu
,
W.
Yang
,
J.
Li
,
P.
Niuc
, and
X.
Jiang
,
J. Mater. Chem. C
5
,
4319
4326
(
2017
).
17.
L.
Chen
,
S.
Mao
,
P.
Wang
,
Z.
Yao
,
Z.
Du
,
Z.
Zhu
,
L. A.
Belfiore
, and
J.
Tang
,
Adv. Optical Mater
9
(
1
),
2001505
(
2021
).
18.
J.
Huang
,
Q.
Li
,
X.
Lu
,
J.
Meng
, and
Z.
Li
,
Adv. Mater. Interfaces
9
(
23
),
2200327
(
2022
).
19.
X.
Dong
,
D.
Zheng
,
J.
Lu
,
Y.
Niu
,
B.
Liu
, and
H.
Wang
,
Appl. Phys. Lett.
118
,
122101
(
2021
).
20.
W.
Zhang
,
J.
Xu
,
W.
Ye
,
Y.
Li
,
Z.
Qi
,
J.
Dai
,
Z.
Wu
,
C.
Chen
,
J.
Yin
,
J.
Li
,
H.
Jiang
, and
Y.
Fang
,
Appl. Phys. Lett.
106
,
021112
(
2015
).
21.
L.
Qian
,
W.
Li
,
Z.
Gu
,
J.
Tian
,
X.
Huang
,
P. T.
Lai
, and
W.
Zhang
,
Adv. Opt. Mater.
10
(
12
),
2102055
(
2022
).
22.
D.
Wang
,
C.
Ge
,
G.
Wu
,
Z.
Li
,
J.
Wang
,
T.
Zhang
,
Y.
Yua
, and
L.
Luo
,
J. Mater. Chem. C
5
(
6
),
1328
1335
(
2017
).
23.
S.
Lee
,
X.
Jin
,
H.
Jung
,
H.
Lewis
,
Y.
Liu
,
B.
Guo
,
S. H.
Kodati
,
M.
Schwartz
,
C.
Grein
,
T. J.
Ronningen
,
J. P. R.
David
,
J. C.
Campbell
, and
S.
Krishna
,
Optica
10
(
2
),
147
154
(
2023
).
24.
H.
Wang
,
J.
Ma
,
L.
Cong
,
D.
Song
,
L.
Fei
,
P.
Li
,
B.
Li
, and
Y.
Liu
,
Mater. Today Phys.
24
,
100673
(
2022
).
25.
Q.
Yang
,
H.
Huang
,
G.
Xu
,
Y.
Yuan
,
M.
Jiang
,
Y.
Zhong
,
X.
Gao
,
J.
Xu
, and
S.
Wang
,
Appl. Phys. Lett.
123
,
213302
(
2023
).
26.
Y.
Chen
,
X.
Xin
,
N.
Zhang
, and
Y. J.
Xu
,
Part. Part. Syst. Charact.
34
(
8
),
1600357
(
2017
).
27.
G. H.
Chan
,
J.
Zhao
,
G. C.
Schatz
, and
R. P.
Van Duyne
,
J. Phys. Chem. C
112
(
36
),
13958
13963
(
2008
).
28.
S.
Ding
,
C.
Liu
,
Z.
Li
,
Z.
Lu
,
Q.
Tao
,
D.
Lu
,
Y.
Chen
,
W.
Tong
,
L.
Liu
,
W.
Li
,
L.
Ma
,
X.
Yang
,
Z.
Xiao
,
Y.
Wang
,
L.
Liao
, and
Y.
Liu
,
ACS Nano
18
,
1195
1203
(
2024
).
29.
K.
Shi
,
J.
Li
,
Y.
Xiao
,
L.
Guo
,
X.
Chu
,
Y.
Zhai
,
B.
Zhang
,
D.
Lu
, and
F.
Rosei
,
ACS Appl. Mater. Interfaces
12
,
31382
31391
(
2020
).
30.
J.
Shan
,
J.
Li
,
X.
Chu
,
M.
Xu
,
F.
Jin
,
X.
Wang
,
L.
Ma
,
X.
Fang
,
Z.
We
, and
X.
Wang
,
RSC Adv.
8
,
7942
7948
(
2018
).
31.
H.
Yang
,
R.
Luo
,
K.
Shi
,
J.
Li
,
M.
Xu
,
X.
Chu
,
Y.
Zhai
,
G.
Qu
, and
X.
Fang
,
Nanotechnology
35
,
105202
(
2024
).
32.
J.
Liu
,
M.
Xu
,
T.
Zhang
,
X.
Chu
,
K.
Shi
, and
H.
Li
,
Environ. Sci. Pollut. Res.
30
,
9738
9748
(
2022
).
33.
B.
Sun
,
Z.
Wang
,
Z.
Liu
,
X.
Tan
,
X.
Liu
,
T.
Shi
,
J.
Zhou
, and
G.
Liao
,
Adv. Funct. Mater.
29
(
26
),
1900541
(
2019
).
34.
S.
Kunwar
,
S.
Pandit
,
J.-H.
Jeong
, and
J.
Lee
,
Nano-Micro Lett.
12
,
91
(
2020
).
35.
Y.
Liu
,
W.
Huang
,
W.
Chen
,
X.
Wang
,
J.
Guo
,
H.
Tian
,
H.
Zhang
,
Y.
Wang
,
B.
Yu
,
T.-L.
Ren
, and
J.
Xu
,
Appl. Surf. Sci.
481
,
1127
1132
(
2019
).
You do not currently have access to this content.