This work presents an electron microscopy study of damage propagation in long-wave buried heterostructure quantum cascade lasers (QCLs) subjected to varying degrees of thermal stressing through long-term continuous wave (CW) burn-in testing. After over 500 h of burn-in, two lasers failed suddenly due to facet-level damage, which was preceded by a minor degradation in optical performance. A third laser survived over 600 h of burn-in without any optical degradation. Select subjects of this test, along with an unstressed QCL, were characterized through a combination of scanning electron microscopy (SEM), focused-ion-beam (FIB), and transmission electron microscopy (TEM) techniques. SEM and FIB analysis of both live and failed stressed devices suggests the facet is the most likely origin of failure. TEM analysis of identically packaged QCLs at different stages of their operational life cycle, from unstressed to failed, reveals insights into how defects near the laser core diffuse during operational stressing. This study identifies pre-existing defects concentrated around the interface of the iron-doped InP region in unstressed QCLs. TEM of live stressed devices reveals that these defects diffuse during the thermal stress relaxation process that occurs during burn-in, forming a dislocation network near the active region. Finally, TEM of failed devices suggests that this dislocation network can diffuse enough to degrade the laser and ultimately lead to the onset of catastrophic optical damage at the facet.

1.
Y.
Hu
,
Q.
Zhang
, and
J.
Li
, “
The thermal failure process of the quantum cascade laser
,”
Opt. Quant. Electron.
47
(
10
),
3419
3426
(
2015
).
2.
H. K.
Lee
,
K. S.
Chung
,
J. S.
Yu
, and
M.
Razeghi
, “
Thermal analysis of buried heterostructure quantum cascade lasers for long-wavelength infrared emission using 2D anisotropic heat-dissipation model
,”
Phys. Status Solidi A
206
,
356
362
(
2009
).
3.
V.
Spagnolo
,
A.
Lops
,
G.
Scamarcio
,
M. S.
Vitiello
, and
C.
Di Franco
, “
Improved thermal management of mid-IR quantum cascade lasers
,”
J. Appl. Phys.
103
(
4
),
043103
(
2008
).
4.
D.
Pierścińska
,
K.
Pierściński
,
G.
Sobczak
,
K.
Krajewska
,
K.
Chmielewski
,
A.
Kuźmicz
,
K.
Piskorski
, and
P.
Gutowski
, “
In-depth experimental analysis of influence of electroplated gold thickness on thermal and electro-optical properties of mid-IR AlInAs/InGaAs/InP quantum cascade lasers
,”
Materials
14
(
23
),
7352
(
2021
).
5.
Q.
Zhang
,
F. Q.
Liu
,
W.
Zhang
,
Q.
Lu
,
L.
Wang
,
L.
Li
, and
Z.
Wang
, “
Thermal induced facet destructive feature of quantum cascade lasers
,”
Appl Phys Lett.
96
(
14
),
141117
(
2010
).
6.
D.
Pierścińska
,
K.
Pierściński
,
G.
Sobczak
,
P.
Gutowski
,
M.
Płuska
, and
M.
Bugajski
, “
Degradation of AlInAs/InGaAs/InP quantum cascade lasers due to electrode adhesion failure
,”
Microelectron. Reliab.
99
,
113
118
(
2019
).
7.
Y.
Sin
,
Z.
Lingley
,
M.
Brodie
,
B.
Knipfer
,
C.
Sigler
,
C.
Boyle
,
J. D.
Kirch
,
K.
Oresick
,
H.
Kim
,
D.
Botez
,
L. J.
Mawst
,
D.
Lindberg
, and
T.
Earles
,
Catastrophic degradation in high-power buried heterostructure quantum cascade lasers
,” in
Conference on Lasers and Electro-Optics (CLEO)
,
2019
.
8.
Y.
Sin
,
Z.
Lingley
,
M.
Brodie
,
N.
Presser
,
S. C.
Moss
,
J.
Kirch
,
C. C.
Chang
,
C.
Boyle
,
L. J.
Mawst
,
D.
Botez
,
D.
Lindberg
, and
T.
Earles
, “
Destructive physical analysis of degraded quantum cascade lasers
,”
Proc. SPIE
9382
,
93821P
(
2015
).
9.
T. L.
Myers
,
B. D.
Cannon
,
M. S.
Taubman
, and
B. E.
Bernacki
, “
Performance and reliability of quantum cascade lasers
,”
Proc. SPIE
8733
,
87330E
(
2013
).
10.
B.
Knipfer
,
C.
Sigler
,
C.
Boyle
,
J. D.
Kirch
,
K.
Oresick
,
H.
Kim
,
D.
Botez
,
L. J.
Mawst
,
N.
Becher
,
M.
Farzaneh
,
D. F.
Lindberg
III
, and
T.
Earles
, “
Failure analysis of high-power (one-watt) room-temperature continuous wave quantum cascade lasers
,” in
IEEE International Semiconductor Laser Conference (ISLC)
(
IEEE
,
2018
).
11.
F.
Xie
,
H. K.
Nguyen
,
H.
Leblanc
,
L.
Hughes
,
J.
Wang
,
J.
Wen
,
D. J.
Miller
, and
K.
Lascola
, “
Long term reliability study and life time model of quantum cascade lasers
,”
Appl. Phys. Lett.
109
(
12
),
121111
(
2016
).
12.
R.
Yin
,
J. C.
Zhang
,
Q. Q.
Guo
,
N.
Zhuo
,
S. Q.
Zhai
,
Z. W.
Jia
,
J. Q.
Liu
,
L. J.
Wang
,
S. M.
Liu
,
Q. Y.
Lu
,
F. Q.
Liu
, and
Z. G.
Wang
, “
Catastrophic failure of the back facet in watt-level power long wavelength infrared quantum cascade laser
,”
J. Phys. D
55
(
36
),
365102
(
2022
).
13.
D.
Pieŕscínska
,
K.
Pieŕscínski
,
P.
Gutowski
,
M.
Badura
,
G.
Sobczak
,
O.
Serebrennikova
,
B.
Ściana
,
M.
Tlaczala
, and
M.
Bugajski
, “
Heat dissipation schemes in AlInAs/InGaAs/InP quantum cascade lasers monitored by CCD thermoreflectance
,”
Photonics
4
(
4
),
47
(
2017
).
14.
H. K.
Lee
and
J. S.
Yu
, “
Thermal effects in quantum cascade lasers at λ ∼ 4.6 μm under pulsed and continuous-wave modes
,”
Appl. Phys. B
106
,
619
627
(
2012
).
15.
C.
Cao
,
B.
Chen
,
H.
Chen
, and
Y.
Fang
, “
Investigation of InGaAs/InAlAs superlattices for quantum cascade laser structures grown by MOCVD
,”
Proc. SPIE
12565
,
125652L
(
2023
).
16.
D.
Hathaway
,
M.
Shahzad
,
T. S.
Sakthivel
,
M.
Suttinger
,
R.
Go
,
E.
Sanchez
,
S.
Seal
,
H.
Shu
, and
A.
Lyakh
, “
Output facet heating mechanism for uncoated high power long wave infrared quantum cascade lasers
,”
AIP Adv.
10
(
8
),
085104
(
2020
).
17.
A. M.
Villalobos Meza
,
M.
Shahzad
,
D.
Hathaway
,
H.
Shu
, and
A.
Lyakh
, “
Correlation of superlattice cross-plane thermal conductivity with emission wavelength in InAlAs/InGaAs quantum cascade lasers
,”
Micromachines
13
(
11
),
1934
(
2022
).
18.
F.
Xie
, “
Reliability of 4.6-μm quantum cascade lasers under continuous-wave room-temperature operation
,”
Opt. Eng.
49
(
11
),
111104
(
2010
).
19.
M. J.
Süess
,
R.
Peretti
,
Y.
Liang
,
J. M.
Wolf
,
C.
Bonzon
,
B.
Hinkov
,
S.
Nida
,
P.
Jouy
,
W.
Metaferia
,
S.
Lourdudoss
,
M.
Beck
, and
J.
Faist
, “
Advanced fabrication of single-mode and multi-wavelength MIR-QCLs
,”
Photonics
3
(
2
),
26
(
2016
).
20.
Y. V.
Flores
,
M.
Elagin
,
S. S.
Kurlov
,
A.
Aleksandrova
,
G.
Monastyrskyi
,
J.
Kischkat
,
M. P.
Semtsiv
, and
W. T.
Masselink
, “
Growth initiation for buried-heterostructure quantum-cascade laser regrowth by gas-source molecular-beam epitaxy
,”
J. Cryst. Growth
398
,
40
44
(
2014
).
21.
E.
Cristobal
,
M.
Fetters
,
A. W. K.
Liu
,
J. M.
Fastenau
,
A.
Azim
,
L.
Milbocker
, and
A.
Lyakh
, “
High peak power quantum cascade lasers monolithically integrated onto silicon with high yield and good near-term reliability
,”
Appl. Phys. Lett.
122
(
14
),
141108
(
2023
).
22.
D.
Pierścińska
,
K.
Pierściński
,
M.
Płuska
,
G.
Sobczak
,
A.
Kuźmicz
,
P.
Gutowski
, and
M.
Bugajski
, “
Temperature induced degradation mechanisms of AlInAs/InGaAs/InP quantum cascade lasers
,”
Mater. Res. Express
5
(
1
),
016204
(
2018
).
23.
S.
Wang
,
C.
Xu
,
M. C.
Tam
,
K.
Vaillancourt
,
Z.
Wasilewski
,
L.
Wei
, and
D.
Ban
, “
Visualization of localized facet Joule heating induced optical degradation on mid-infrared quantum cascade lasers
,”
Opt. Express
30
(
24
),
43342
(
2022
).
24.
V.
Spagnolo
,
G.
Scamarcio
,
D.
Marano
,
H.
Page
, and
C.
Sirtori
, “
Thermoelastic stress in GaAs/AlGaAs quantum cascade lasers
,”
Appl. Phys. Lett.
82
(
26
),
4639
4641
(
2003
).
25.
M.
Beck
,
D.
Hofstetter
,
T.
Aellen
,
J.
Faist
,
U.
Oesterle
,
M.
Ilegems
,
E.
Gini
, and
H.
Melchior
, “
Continuous wave operation of a mid-infrared semiconductor laser at room temperature
,”
Science
295
,
301
305
(
2002
).
26.
V.
Spagnolo
,
G.
Scamarcio
,
H.
Page
, and
C.
Sirtori
, “
Simultaneous measurement of the electronic and lattice temperatures in GaAs/Al0.45Ga0.55As quantum-cascade lasers: Influence on the optical performance
,”
Appl. Phys. Lett.
84
(
18
),
3690
3692
(
2004
).
27.
F.
Abbas
,
B. J.
Pandey
,
K.
Clark
,
K.
Lascola
,
Y.
Dikmelik
,
D.
Robbins
,
D.
Hinojos
,
K. L.
Hodges
,
K.
Roodenko
, and
Q.
Gu
, “
Thermal modeling of quantum cascade lasers with 3D anisotropic heat transfer analysis
,”
Proc. SPIE
11288
,
1128808
(
2020
).
28.
Y.
Song
,
Z.
Lv
,
J.
Bai
,
S.
Niu
,
Z.
Wu
,
L.
Qin
,
Y.
Chen
,
L.
Liang
,
Y.
Lei
,
P.
Jia
,
X.
Shan
, and
L.
Wang
, “
Processes of the reliability and degradation mechanism of high-power semiconductor lasers
,”
Crystals
12
(
6
),
765
(
2022
).
You do not currently have access to this content.