The glow-to-arc transition is a critical phenomenon in plasma discharges, commonly leading to detrimental effects. The physical mechanisms triggering this transition remain poorly understood. The advent of a discharge called Hyper-Power Impulse Magnetron has opened possibilities. Hyper-Power Impulse Magnetron allows the glow mode to be maintained over long periods (1 ms) and at high-current densities (>5  A.cm2), which has unveiled certain features in the glow-to-arc transition. This work focuses on a graphite target that transits easily in the arc regime. The high-speed video-camera analysis revealed specific properties of graphite in ExB discharges, and the statistical study of the arc transition revealed differences from other refractory target materials. The early stage of cathodic spot formation, observed as bright dots, will be presented and analyzed within the known “ecton” and “vaporization” models for spot formation. This experimental study highlights the role of luminous spot formation prior to arc transition, with possible optimization on the stability of magnetron discharges.

1.
W. S.
Boyle
and
F. E.
Haworth
, “
Glow-to-arc transition
,”
Phys. Rev.
101
,
935
938
(
1956
).
2.
A.
Anders
, “
Glows, arcs, ohmic discharges: An electrode-centered review on discharge modes and the transitions between them
,”
Appl. Phys. Rev.
11
(
3
),
031310
(
2024
).
3.
A.
Anders
,
Cathodic Arcs: From Fractal Spots to Energetic Condensation
(
Springer
,
2008
), Vol.
50
.
4.
V.
Kouznetsov
, “
Method and apparatus for plasma generation
,” U.S. Patent 8,685,213 B2 (1 April
2014
).
5.
D.
Lundin
,
J. T.
Gudmundsson
, and
T.
Minea
, “
High power impulse magnetron sputtering: Fundamentals, technologies
,” in
Challenges and Applications
(
Elsevier
,
2019
).
6.
J. A.
Hopwood
, “
Plasma physics
,” in
Thin Films
(
Elsevier
,
2000
), Vol.
27
, pp.
181
207
.
7.
A.
Anders
, “
Discharge physics of high power impulse magnetron sputtering
,”
Surf. Coat. Technol.
205
,
S1
S9
(
2011
).
8.
A.
Anders
, “
Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)
,”
J. Appl. Phys.
121
,
171101
171103
(
2017
).
9.
E.
Morel
,
Y.
Rozier
,
C.
Ballages
,
R.
Bazinette
,
T.
Forchard
,
C.
Creusot
,
A.
Girodet
, and
T.
Minea
, “
Behavior of high current density pulsed magnetron discharge with a graphite target
,”
Plasma Sources Sci. Technol.
30
(
12
),
125001
(
2021
).
10.
A.
Anders
,
J.
Capek
,
M.
Hála
, and
L.
Martinu
, “
The ‘recycling trap’: A generalized explanation of discharge runaway in high-power impulse magnetron sputtering
,”
J. Phys. D: Appl. Phys.
45
(
1
)
012003
(
2012
).
11.
T.
Kubart
,
A.
Aijaz
,
J.
Andersson
,
F.
Ferreira
,
J. C.
Oliveira
,
A.
Sobetkii
,
A. C.
Parau
, and
C.
Vitelaru
, “
High power impulse magnetron sputtering of diamond-like carbon coatings
,”
J. Vac. Sci. Technol., A
38
(
4
),
043408
(
2020
).
12.
C.
Vitelaru
,
A.
Aijaz
,
A. C.
Parau
,
A. E.
Kiss
,
A.
Sobetkii
, and
T.
Kubart
, “
Discharge runaway in high power impulse magnetron sputtering of carbon: The effect of gas pressure, composition and target peak voltage
,”
J. Phys. D: Appl. Phys.
51
(
16
),
165201
(
2018
).
13.
J.
Oliveira
,
F.
Ferreira
,
R.
Serra
,
T.
Kubart
,
C.
Vitelaru
, and
A.
Cavaleiro
, “
Correlation between substrate ion fluxes and the properties of diamond-like carbon films deposited by deep oscillation magnetron sputtering in Ar and Ar+ ne plasmas
,”
Coatings
10
(
10
),
914
(
2020
).
14.
A.
Aijaz
,
K.
Sarakinos
,
D.
Lundin
,
N.
Brenning
, and
U.
Helmersson
, “
A strategy for increased carbon ionization in magnetron sputtering discharges
,”
Diamond Relat. Mater.
23
,
1
4
(
2012
).
15.
N. P.
Poluektov
,
I.
Usatov
, and
M.
Kladov
, “
Investigation of carbon ionization in HiPIMS discharge with a hollow cathode magnetron
,”
Plasma Sources Sci. Technol.
30
,
075003
(
2021
).
16.
F.
Cardoso
,
F.
Ferreira
,
A.
Cavaleiro
, and
A.
Ramalho
, “
Performance of diamond-like carbon coatings (produced by the innovative ne-HiPIMS technology) under different lubrication regimes
,”
Wear
477
,
203775
(
2021
).
17.
M.
Lattemann
,
B.
Abendroth
,
A.
Moafi
,
D.
McCulloch
, and
D.
McKenzie
, “
Controlled glow to arc transition in sputtering for high rate deposition of carbon films
,”
Diamond Relat. Mater.
20
(
2
),
68
74
(
2011
).
18.
E.
Morel
,
Y.
Rozier
, and
T.
Minea
, “
Hyper power impulse magnetron–HyPIM–glow discharge
,”
Europhys. Lett.
138
,
24001
(
2022
).
19.
A.
Anders
, “
The evolution of ion charge states in cathodic vacuum arc plasmas: a review
,”
Plasma Sources Sci. Technol.
21
(
3
),
035014
(
2012
).
20.
E.
Morel
,
A.
El Farsy
,
Y.
Rozier
, and
T.
Minea
, “
Experimental analysis of hyper power impulse magnetron discharge with long pulse operation
,”
Plasma Sources Sci. Technol.
33
(
10
),
105005
(
2024
).
21.
A.
Robson
, “
The motion of a low-pressure arc in a strong magnetic field
,”
J. Phys. D: Appl. Phys.
11
(
13
),
1917
(
1978
).
22.
B. T.
Du Montcel
, “
Étude exp érimentale et modélisation d'un plasma de vapeurs métalliques dans une ampoule à vide pour le développement de disjoncteurs haute-tension
,” Ph.D. dissertation (
Université de Lorraine
,
2018
).
23.
R. L.
Boxman
,
D. M.
Sanders
, and
P. J.
Martin
,
Handbook of Vacuum Arc Science & Technology: Fundamentals and Applications
(
William Andrew
,
1996
).
24.
G. A.
Mesyats
, “
Ectons and their role in plasma processes
,”
Plasma Phys. Controlled Fusion
47
(
5A
),
A109
(
2005
).
25.
S. A.
Barengolts
,
G. A.
Mesyats
, and
D. L.
Shmelev
, “
Structure and time behavior of vacuum arc cathode spots
,”
IEEE Trans. Plasma Sci.
31
(
5
),
809
816
(
2003
).
26.
G.
Mesyats
,
Explosive Electron Emission
(
URO Press
,
Ekaterinburg, Russia
,
1998
).
27.
G.
Mesyats
, “
Ecton mechanism of the vacuum arc cathode spot
,”
IEEE Trans. Plasma Sci.
23
(
6
),
879
883
(
1995
).
28.
C. P.
Nash
and
C. W.
Olsen
, “
Initial phase of the exploding wire phenomenon
,”
Phys. Fluids
7
(
2
),
209
213
(
1964
).
29.
S.
Anders
and
A.
Anders
, “
On modes of arc cathode operation
,”
IEEE Trans. Plasma Sci.
19
(
1
),
20
24
(
1991
).
30.
D.
Mofakhami
,
B.
Seznec
,
P.
Teste
,
R.
Landfried
,
P.
Dessante
, and
T.
Minea
, “
Revising the Nottingham inversion instability as a discontinuous transition between two distinct steady states of thermo-field emission from micro-protrusions
,”
Sci. Rep.
(unpublished) (
2024
).
31.
L.
Niemeyer
,
L.
Pietronero
, and
H. J.
Wiesmann
, “
Fractal dimension of dielectric breakdown
,”
Phys. Rev. Lett.
52
(
12
),
1033
(
1984
).
You do not currently have access to this content.