In this paper, we propose an energy harvester that overcomes the bottleneck problem under ultralow-frequency rotational motion. The harvester consists of bistable dual piezoelectric energy harvesters (BD-PEH) with the magnetic plucking mechanism. The driving magnet is introduced to provide the magnetic plucking to BD-PEH. Therefore, the BD-PEH can operate at high-frequency vibrations across the potential well under ultralow-frequency rotation, which enhances energy harvesting efficiency. A numerical model of the harvester is developed, and the model results are in agreement with the experimental results. The effect of the depth of the potential well on the performance of the harvester is analyzed. The deeper the potential well, the higher the energy output, but it will reduce the bandwidth of the harvester. The experimental results show that the highest average power output is 0.81 mW at 1.2 Hz. In conclusion, the energy harvester proposed in this paper can generate enough energy to drive low-power electronic devices under ultralow-frequency rotational motion.

1.
L.-C.
Zhao
,
H.-X.
Zou
,
K.-X.
Wei
et al, “
Mechanical intelligent energy harvesting: From methodology to applications
,”
Adv. Energy Mater.
13
(
29
),
2300557
(
2023
).
2.
Q.
Bai
,
T.
Zhou
,
C.
Gan
et al, “
A triboelectric-piezoelectric hybrid nanogenerator for rotational energy harvesting based on bistable cantilever beam
,”
Energy Convers. Manage.
300
,
117971
(
2024
).
3.
J.
Ding
,
D.
Zhou
,
M.
Wang
et al, “
Fractal-inspired multifrequency piezoelectric energy harvesters
,”
Appl. Phys. Lett.
124
(
11
),
114105
(
2024
).
4.
Y.
Su
,
S.
Chen
,
B.
Liu
et al, “
Maxwell displacement current induced wireless self-powered gas sensor array
,”
Mater. Today Phys.
30
,
100951
(
2023
).
5.
J.
Li
,
X.
Han
,
X.
Rui
et al, “
Design and analysis of the piezoelectric-electromagnetic energy harvester based on magnetically coupled structures
,”
Ceram. Int.
49
(
22, Part A
),
35597
35607
(
2023
).
6.
Q.
Gao
,
W.
Li
,
Y.
Shi
et al, “
A rotating auxetic energy harvester for vehicle wheels
,”
Eng. Struct.
288
,
116190
(
2023
).
7.
C. L.
Zhang
,
Z. H.
Lai
,
M. Q.
Li
et al, “
Wind energy harvesting from a conventional turbine structure with an embedded vibro-impact dielectric elastomer generator
,”
J. Sound Vib.
487
,
115616
(
2020
).
8.
H.
Fu
,
X.
Mei
,
D.
Yurchenko
et al, “
Rotational energy harvesting for self-powered sensing
,”
Joule
5
(
5
),
1074
1118
(
2021
).
9.
D.
Hao
,
L.
Kong
,
Z.
Zhang
et al, “
An electromagnetic energy harvester with a half-wave rectification mechanism for military personnel
,”
Sustain. Energy Technol. Assess.
57
,
103184
(
2023
).
10.
Y.
Li
,
W.
Li
,
Z.
Jin
et al, “
Ternary ordered assembled piezoelectric composite for self-powered ammonia detection
,”
Nano Energy
122
,
109291
(
2024
).
11.
J.
Dai
,
G.
Xie
,
C.
Chen
et al, “
Hierarchical piezoelectric composite film for self-powered moisture detection and wearable biomonitoring
,”
Appl. Phys. Lett.
124
(
5
),
053701
(
2024
).
12.
Z.-Q.
Lu
,
L.
Zhao
,
H.-L.
Fu
et al, “
Ocean wave energy harvesting with high energy density and self-powered monitoring system
,”
Nat. Commun.
15
(
1
),
6513
(
2024
).
13.
Y.
Tian
,
X.
Meng
,
X.
Lin
et al, “
A dual auxiliary beam galloping triboelectric nanogenerator for low speed wind energy harvesting
,”
Appl. Phys. Lett.
121
(
9
),
093902
(
2022
).
14.
J.
Kan
,
Y.
Wu
,
Y.
Gu
et al, “
A drum-like piezoelectric rotational energy harvester via magnetic beating
,”
Appl. Phys. Lett.
123
(
11
),
113901
(
2023
).
15.
Y.
Zhang
,
W.
Wang
,
J.
Xie
et al, “
Enhanced variable reluctance energy harvesting for self-powered monitoring
,”
Appl. Energy
321
,
119402
(
2022
).
16.
Q.
Shi
,
Z.
Zhao
,
J.
Yang
et al, “
A flexible-contact electromagnetic-triboelectric hybrid nanogenerator for rotational energy harvesting and speed monitoring of the downhole motor
,”
Chem. Eng. J.
477
,
146886
(
2023
).
17.
M.
Guan
and
W.-H.
Liao
, “
Design and analysis of a piezoelectric energy harvester for rotational motion system
,”
Energy Convers. Manage.
111
,
239
244
(
2016
).
18.
C.
Zhang
,
J.
Xu
,
S.
Fang
et al, “
A pendulum-based absorber-harvester with an embedded hybrid vibro-impact electromagnetic-dielectric generator
,”
Nano Energy
107
,
108126
(
2023
).
19.
H.-C.
Song
,
S.-W.
Kim
,
H. S.
Kim
et al, “
Piezoelectric energy harvesting design principles for materials and structures: Material figure-of-merit and self-resonance tuning
,”
Adv. Mater.
32
(
51
),
2002208
(
2020
).
20.
H.-X.
Zou
,
M.
Li
,
L.-C.
Zhao
et al, “
A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting
,”
Energy
217
,
119429
(
2021
).
21.
S.
Fang
,
K.
Chen
,
Z.
Lai
et al, “
Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations
,”
Appl. Energy
331
,
120355
(
2023
).
22.
H.
Fu
and
E. M.
Yeatman
, “
A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion
,”
Energy
125
,
152
161
(
2017
).
23.
X.
Rui
,
Y.
Zhang
,
Z.
Zeng
et al, “
Design and analysis of a broadband three-beam impact piezoelectric energy harvester for low-frequency rotational motion
,”
Mech. Syst. Sig. Process.
149
,
107307
(
2021
).
24.
X.
Rui
,
Z.
Zeng
,
Y.
Zhang
et al, “
Design and experimental investigation of a self-tuning piezoelectric energy harvesting system for intelligent vehicle wheels
,”
IEEE Trans. Veh. Technol.
69
(
2
),
1440
1451
(
2020
).
25.
Y.
Cao
,
J.
Yang
, and
D.
Yang
, “
Performance investigation and parameter identification of inverse variable cross-section energy harvester
,”
Int. J. Mech. Sci.
248
,
108204
(
2023
).
26.
X.
Mei
,
H.
Du
, and
S.
Zhou
, “
A comprehensive theoretical model for the centrifugal effect of nonlinear beam-type piezoelectrical energy harvesters in rotational motions
,”
Mech. Syst. Sig. Process.
189
,
110106
(
2023
).
27.
X.
Rui
,
H.
Li
,
X.
Han
et al, “
A piezoelectric-triboelectric-electromagnetic tri-hybrid energy harvester with dual-frequency-up-conversion mechanism for ultralow-frequency rotational motion
,”
Sustain. Energy Technol. Assess.
68
,
103859
(
2024
).
28.
S.
Fang
,
K.
Chen
,
Z.
Lai
et al, “
Snap-through energy harvester with buckled mechanism and hierarchical auxetic structures for ultra-low-frequency rotational excitations
,”
Appl. Phys. Lett.
122
(
9
),
093901
(
2023
).
You do not currently have access to this content.