Overcoming the diffraction limit has been a long-lasting pursuit for researchers owing to the great potential it offers in going beyond the fundamental resolution restriction in imaging processes. In acoustics, meta-lenses have been a promising way to achieve sub-wavelength imaging, the practical application of which, however, has been limited by expensive material manufacturing, complex system setup, and material loss. Here, we propose a set of procedures equivalent to a virtual super-lens that selectively amplifies the evanescent wave components in the measured acoustic field spectrum, thereby enabling super-resolution imaging without any auxiliary setups or purposely designed super-lens. The proposed virtual super-lens is experimentally verified by considering the imaging of an irregularly shaped sample with sub-wavelength features. We further demonstrate the robustness of the high-quality imaging performance remains acceptable with some environment background noises. In the light of the simple experimental setup involved, our proposed method is flexible and can be readily applied to various practical imaging scenarios.

1.
C.
Errico
,
J.
Pierre
,
S.
Pezet
,
Y.
Desailly
,
Z.
Lenkei
,
O.
Couture
, and
M.
Tanter
,
Nature
527
(
7579
),
499
502
(
2015
).
2.
M.
Tanter
and
M.
Fink
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
61
(
1
),
102
119
(
2014
).
3.
B. W.
Drinkwater
and
P. D.
Wilcox
,
NDT&E Int.
39
(
7
),
525
541
(
2006
).
4.
L.
Le Jeune
,
S.
Robert
,
E.
Lopez Villaverde
, and
C.
Prada
,
Ultrasonics
64
,
128
138
(
2016
).
5.
J. L.
Sutton
,
Proc. IEEE
67
(
4
),
554
566
(
1979
).
6.
W. S.
Gan
,
Acoustical Imaging: Techniques and Applications for Engineers
, 1st ed. (
Wiley
,
2012
).
7.
E.
Abbe
,
Arch. Mikrosk. Anat.
9
(
1
),
413
468
(
1873
).
8.
G.
Ma
and
P.
Sheng
,
Sci. Adv.
2
(
2
),
e1501595
(
2016
).
9.
S. A.
Cummer
,
J.
Christensen
, and
A.
Alù
,
Nat. Rev. Mater.
1
(
3
),
16001
(
2016
).
10.
E.
Dong
,
P.
Cao
,
J.
Zhang
,
S.
Zhang
,
N. X.
Fang
, and
Y.
Zhang
,
Natl. Sci. Rev.
10
(
6
),
nwac246
(
2023
).
11.
H.
Ge
,
M.
Yang
,
C.
Ma
,
M.-H.
Lu
,
Y.-F.
Chen
,
N.
Fang
, and
P.
Sheng
,
Natl. Sci. Rev.
5
(
2
),
159
182
(
2018
).
12.
H.-W.
Dong
,
C.
Shen
,
S.-D.
Zhao
,
W.
Qiu
,
H.
Zheng
,
C.
Zhang
,
S. A.
Cummer
,
Y.-S.
Wang
,
D.
Fang
, and
L.
Cheng
,
Natl. Sci. Rev.
9
(
12
),
nwac030
(
2022
).
13.
K.
Melde
,
A. G.
Mark
,
T.
Qiu
, and
P.
Fischer
,
Nature
537
(
7621
),
518
522
(
2016
).
14.
Z.-L.
Li
,
K.
Chen
,
F.
Li
,
Z.-J.
Shi
,
Q.-L.
Sun
,
P.-Q.
Li
,
Y.-G.
Peng
,
L.-X.
Huang
,
G.
Yang
,
H.
Zheng
, and
X.-F.
Zhu
,
Nat. Commun.
14
(
1
),
5319
(
2023
).
15.
X.
Li
,
M.-H.
Liu
,
Z.-L.
Li
,
X.-Y.
Zou
,
X.-F.
Zhu
,
B.
Liang
, and
J.-C.
Cheng
,
Adv. Mater. Interfaces
10
(
8
),
2370028
(
2023
).
16.
S.
Yang
,
J. H.
Page
,
Z.
Liu
,
M. L.
Cowan
,
C. T.
Chan
, and
P.
Sheng
,
Phys. Rev. Lett.
93
(
2
),
024301
(
2004
).
17.
T.
Liu
,
F.
Chen
,
S.
Liang
,
H.
Gao
, and
J.
Zhu
,
Phys. Rev. Appl.
11
(
3
),
034061
(
2019
).
18.
J.
de Rosny
and
M.
Fink
,
Phys. Rev. Lett.
89
(
12
),
124301
(
2002
).
19.
F.
Lemoult
,
M.
Fink
, and
G.
Lerosey
,
Phys. Rev. Lett.
107
(
6
),
064301
(
2011
).
20.
J. B.
Pendry
,
Phys. Rev. Lett.
85
(
18
),
3966
3969
(
2000
).
21.
T.
Taubner
,
D.
Korobkin
,
Y.
Urzhumov
,
G.
Shvets
, and
R.
Hillenbrand
,
Science
313
(
5793
),
1595
1595
(
2006
).
22.
N.
Fang
,
H.
Lee
,
C.
Sun
, and
X.
Zhang
,
Science
308
(
5721
),
534
537
(
2005
).
23.
K.
Deng
,
Y.
Ding
,
Z.
He
,
H.
Zhao
,
J.
Shi
, and
Z.
Liu
,
J. Appl. Phys.
105
(
12
),
124909
(
2009
).
24.
M.
Ambati
,
N.
Fang
,
C.
Sun
, and
X.
Zhang
,
Phys. Rev. B
75
(
19
),
195447
(
2007
).
25.
C. M.
Park
,
J. J.
Park
,
S. H.
Lee
,
Y. M.
Seo
,
C. K.
Kim
, and
S. H.
Lee
,
Phys. Rev. Lett.
107
(
19
),
194301
(
2011
).
26.
N.
Kaina
,
F.
Lemoult
,
M.
Fink
, and
G.
Lerosey
,
Nature
525
(
7567
),
77
81
(
2015
).
27.
J.
Li
and
C. T.
Chan
,
Phys. Rev. E
70
(
5
),
055602
(
2004
).
28.
X.
Ao
and
C. T.
Chan
,
Phys. Rev. E
77
(
2 Pt 2
),
025601
(
2008
).
29.
J.
Li
,
L.
Fok
,
X.
Yin
,
G.
Bartal
, and
X.
Zhang
,
Nat. Mater.
8
(
12
),
931
934
(
2009
).
30.
Y.-G.
Peng
,
Y.-X.
Shen
,
Z.-G.
Geng
,
P.-Q.
Li
,
J.
Zhu
, and
X.-F.
Zhu
,
Sci. Bull.
65
(
12
),
1022
1029
(
2020
).
31.
H.
Jia
,
M.
Ke
,
R.
Hao
,
Y.
Ye
,
F.
Liu
, and
Z.
Liu
,
Appl. Phys. Lett.
97
(
17
),
173507
(
2010
).
32.
F.
Lemoult
,
N.
Kaina
,
M.
Fink
, and
G.
Lerosey
,
Nat. Phys.
9
(
1
),
55
60
(
2013
).
33.
J.
Zhu
,
J.
Christensen
,
J.
Jung
,
L.
Martin-Moreno
,
X.
Yin
,
L.
Fok
,
X.
Zhang
, and
F. J.
Garcia-Vidal
,
Nat. Phys.
7
(
1
),
52
55
(
2011
).
34.
Y.
Cheng
,
C.
Zhou
,
Q.
Wei
,
D.
Wu
, and
X.
Liu
,
Appl. Phys. Lett.
103
(
22
),
224104
(
2013
).
35.
Y.
Aharonov
,
D. Z.
Albert
, and
L.
Vaidman
,
Phys. Rev. Lett.
60
(
14
),
1351
1354
(
1988
).
36.
M. V.
Berry
and
S.
Popescu
,
J. Phys. A
39
(
22
),
6965
(
2006
).
37.
38.
L.-S.
Zeng
,
Z.-M.
Li
,
Z.-B.
Lin
,
H.
Wu
,
Y.-G.
Peng
, and
X.-F.
Zhu
,
Appl. Phys. Lett.
120
(
20
),
202202
(
2022
).
39.
Y.-X.
Shen
,
Y.-G.
Peng
,
F.
Cai
,
K.
Huang
,
D.-G.
Zhao
,
C.-W.
Qiu
,
H.
Zheng
, and
X.-F.
Zhu
,
Nat. Commun.
10
(
1
),
3411
(
2019
).
40.
A.
Tuniz
and
B. T.
Kuhlmey
,
Nat. Commun.
14
(
1
),
6393
(
2023
).
You do not currently have access to this content.