In the hexagonal, corundum-like structure, α-Ga2O3 has a bandgap of  5.1 eV, which, combined with its relatively small electron effective mass, high Baliga's figure of merit, and high breakdown field, makes it a promising candidate for power electronics. Ga2O3 is easy to dope n-type, but impossible to dope p-type, impeding the realization of some electronic device designs. Developing a lattice-matched p-type material that forms a high-quality heterojunction with n-type Ga2O3 would open new opportunities in electronics and perhaps optoelectronic devices. In this work, we studied Ir2O3 as a candidate for that purpose. Using hybrid density functional theory calculations we predict the electronic band structure of α-Ir2O3 and compare that to α-Ga2O3, and study the stability and electronic properties of α-(IrxGa1−x)2O3 alloys. We discuss the band offset between the two materials and compare it with recently available experimental data. We find that the Ir d bands that compose the top of the valence band in α-Ir2O3 are much higher in energy than O p bands in α-Ga2O3, possibly enabling effective p-type doping. Our results provide an insight into using the Ir2O3 or Ir2O3-Ga2O3 alloys as p-type material lattice-matched to α-Ga2O3 for the realization of pn heterojunctions.

1.
R.
Roy
,
V.
Hill
, and
E.
Osborn
,
J. Am. Chem. Soc.
74
,
719
(
1952
).
3.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
100
,
013504
(
2012
).
4.
W. S.
Hwang
,
A.
Verma
,
H.
Peelaers
,
V.
Protasenko
,
S.
Rouvimov
,
H.
Xing
,
A.
Seabaugh
,
W.
Haensch
,
C. V.
de Walle
,
Z.
Galazka
et al,
Appl. Phys. Lett.
104
,
249902
(
2014
).
5.
S.
Nakagomi
,
T.
Momo
,
S.
Takahashi
, and
Y.
Kokubun
,
Appl. Phys. Lett.
103
,
072105
(
2013
).
6.
M.
Fleischer
and
H.
Meixner
,
Sens. Actuators B
4
,
437
(
1991
).
7.
M.
Bartic
,
M.
Ogita
,
M.
Isai
,
C.-L.
Baban
, and
H.
Suzuki
,
J. Appl. Phys
102
,
023709
(
2007
).
8.
S.
Stegmeier
,
M.
Fleischer
, and
P.
Hauptmann
,
Sens. Actuators B
148
,
439
(
2010
).
9.
T.
Minami
,
Y.
Nishi
, and
T.
Miyata
,
Appl. Phys. Express
6
,
044101
(
2013
).
10.
K.
Sasaki
,
M.
Higashiwaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
IEEE Electron Device Lett.
34
,
493
(
2013
).
11.
K.
Kaneko
,
S.
Fujita
, and
T.
Hitora
,
Jpn. J. Appl. Phys., Part 1
57
,
02CB18
(
2018
).
12.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary IV
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
13.
M.
Higashiwaki
,
K.
Sasaki
,
T.
Kamimura
,
M.
Hoi Wong
,
D.
Krishnamurthy
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
103
,
123511
(
2013
).
14.
M.
Oda
,
R.
Tokuda
,
H.
Kambara
,
T.
Tanikawa
,
T.
Sasaki
, and
T.
Hitora
,
Appl. Phys. Express
9
,
021101
(
2016
).
15.
T.
Uchida
,
K.
Kaneko
, and
S.
Fujita
,
MRS Adv.
3
,
171
(
2018
).
16.
K.
Akaiwa
,
K.
Kaneko
,
K.
Ichino
, and
S.
Fujita
,
Jpn. J. Appl. Phys., Part 1
55
,
1202BA
(
2016
).
17.
S.
Fujita
,
M.
Oda
,
K.
Kaneko
, and
T.
Hitora
,
Jpn. J. Appl. Phys., Part 1
55
,
1202A3
(
2016
).
18.
K.
Kaneko
,
H.
Kawanowa
,
H.
Ito
, and
S.
Fujita
,
Jpn. J. Appl. Phys., Part 1
51
,
020201
(
2012
).
19.
T.
Watahiki
,
Y.
Yuda
,
A.
Furukawa
,
M.
Yamamuka
,
Y.
Takiguchi
, and
S.
Miyajima
,
Appl. Phys. Lett
111
,
222104
(
2017
).
20.
Y.
Kokubun
,
S.
Kubo
, and
S.
Nakagomi
,
Appl. Phys. Express
9
,
091101
(
2016
).
21.
S.
Ghosh
,
M.
Baral
,
R.
Kamparath
,
R.
Choudhary
,
D.
Phase
,
S.
Singh
, and
T.
Ganguli
,
Appl. Phys. Lett.
115
,
061602
(
2019
).
22.
K.
Kaneko
,
I.
Kakeya
,
S.
Komori
, and
S.
Fujita
,
J. Appl. Phys
113
,
233901
(
2013
).
23.
H.
Peelaers
,
D.
Steiauf
,
J. B.
Varley
,
A.
Janotti
, and
C. G.
Van de Walle
,
Phys. Rev. B
92
,
085206
(
2015
).
24.
T.
Wang
,
W.
Li
,
C.
Ni
, and
A.
Janotti
,
Phys. Rev. Appl
10
,
011003
(
2018
).
25.
X.
Cai
,
S.-H.
Wei
,
P.
Deák
,
J.
Yang
,
C.
Zhang
,
B.
Wang
,
S.-S.
Li
, and
H.-X.
Deng
,
Phys. Rev. B
109
,
235205
(
2024
).
26.
F.
Koffyberg
,
J. Phys. Chem. Solids
53
,
1285
(
1992
).
27.
R.
Kawar
,
P.
Chigare
, and
P.
Patil
,
Appl. Surf. Sci.
206
,
90
(
2003
).
28.
S.
Kan
,
S.
Takemoto
,
K.
Kaneko
,
I.
Takahashi
,
M.
Sugimoto
,
T.
Shinohe
, and
S.
Fujita
,
Appl. Phys. Lett.
113
,
212104
(
2018
).
29.
J.
Hao
,
H.
Gong
,
X.
Chen
,
Y.
Xu
,
F.-F.
Ren
,
S.
Gu
,
R.
Zhang
,
Y.
Zheng
, and
J.
Ye
,
Appl. Phys. Lett.
118
,
261601
(
2021
).
30.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev
136
,
B864
(
1964
).
31.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev
140
,
A1133
(
1965
).
32.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
33.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
34.
35.
G. I.
Csonka
,
J. P.
Perdew
,
A.
Ruzsinszky
,
P. H. T.
Philipsen
,
S.
Lebègue
,
J.
Paier
,
O. A.
Vydrov
, and
J. G.
Ángyán
,
Phys. Rev. B
79
,
155107
(
2009
).
36.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys
118
,
8207
(
2003
).
37.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys
124
,
219906
(
2006
).
38.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
39.
A.
Van de Walle
,
P.
Tiwary
,
M.
De Jong
,
D.
Olmsted
,
M.
Asta
,
A.
Dick
,
D.
Shin
,
Y.
Wang
,
L.-Q.
Chen
, and
Z.-K.
Liu
,
Calphad Comput.
42
,
13
(
2013
).
40.
A.
Zunger
,
S.-H.
Wei
,
L. G.
Ferreira
, and
J. E.
Bernard
,
Phys. Rev. Lett.
65
,
353
(
1990
).
41.
Y.
Oshima
,
E. G.
Víllora
, and
K.
Shimamura
,
Appl. Phys. Express
8
,
055501
(
2015
).
42.
A.
Segura
,
L.
Artús
,
R.
Cuscó
,
R.
Goldhahn
, and
M.
Feneberg
,
Phys. Rev. Mater.
1
,
024604
(
2017
).
43.
M.
Marezio
and
J.
Remeika
,
J. Chem. Phys
46
,
1862
(
1967
).
44.
J.
Zhang
,
J.
Shi
,
D.-C.
Qi
,
L.
Chen
, and
K. H.
Zhang
,
APL Mater.
8
,
020906
(
2020
).
45.
T.
Kobayashi
,
T.
Gake
,
Y.
Kumagai
,
F.
Oba
, and
Y.
Matsushita
,
Appl. Phys. Express
12
,
091001
(
2019
).
46.
H.
He
,
R.
Orlando
,
M. A.
Blanco
,
R.
Pandey
,
E.
Amzallag
,
I.
Baraille
, and
M.
Rérat
,
Phys. Rev. B
74
,
195123
(
2006
).
47.
J.
Furthmüller
and
F.
Bechstedt
,
Phys. Rev. B
93
,
115204
(
2016
).
48.
See http://flosfia.com/20180713/ for “
Ground breaking work on gallium oxide (Ga2O3) normally-off transistor Flosfia 2018
”.
49.
A.
Janotti
and
C. G.
Van de Walle
,
Phys. Rev. B
75
,
121201
(
2007
).
50.
K.
Kaneko
,
Y.
Masuda
,
S.
Kan
,
I.
Takahashi
,
Y.
Kato
,
T.
Shinohe
, and
S.
Fujita
,
Appl. Phys. Lett.
118
,
102104
(
2021
).
You do not currently have access to this content.