Flow boiling with dielectric coolant is not only a highly desirable approach for effective electronic cooling but is also notorious for its poor scalability. Most current flow boiling enhancement strategies are based on silicon substrates with footprint areas less than 1 cm2, which greatly limits their applications to large-size electronics. This study developed a scalable channel configuration to facilitate efficient flow boiling on large copper substrates (∼10 cm2), in which the channel walls are formed by porous pin-fin arrays. This type of hybrid capillary wall makes up for the limitation of conventional machining in creating intricate features, making it scalable and feasible for developing large-size, two-phase cold plates. Moreover, effective two-phase separation and sustainable film evaporation have been realized in the current work. As a result, the proposed structure achieved a 512% increase in heat dissipation when the heating area scales up 480% from the silicon microchannels with micro-pin-fin arrays. Experiments showed a base heat flux of 106.1 W/cm2 was dissipated over a heating area of 9.6 cm2 using the dielectric fluid HFE-7100 at a mass flux of 247 kg/m2 s. It outperformed most existing metallic flow boiling heat sinks using the same coolant at a similarly high coefficient of performance as small-size enhanced silicon microchannels.

1.
Y.
Madhour
,
J.
Olivier
,
E.
Costa-Patry
,
S.
Paredes
,
B.
Michel
, and
J. R.
Thome
,
IEEE Trans. Compon., Packag. Manuf. Technol.
1
(
6
),
873
883
(
2011
).
2.
Y. F.
Wang
and
J. T.
Wu
, “Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles,”
Energy Convers. Manage.
207
,
112569
(
2020
).
3.
S. M.
Ghiaasiaan
,
Two-Phase Flow, Boiling, and Condensation: In Conventional and Miniature Systems
(
Cambridge University Press
,
2007
).
4.
D.
Deng
,
L.
Zeng
, and
W.
Sun
,
Int. J. Heat Mass Transfer
175
,
121332
(
2021
).
5.
K. C.
Leong
,
J. Y.
Ho
, and
K. K.
Wong
,
Appl. Therm. Eng.
112
,
999
1019
(
2017
).
6.
K.
Luo
,
W.
Li
,
J.
Ma
,
W.
Chang
,
G.
Huang
, and
C.
Li
,
Int. J. Heat Mass Transfer
191
,
122817
(
2022
).
7.
D. W.
Kim
,
A.
Bar-Cohen
, and
B.
Han
, in
Presented at the 2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
2008
).
8.
D.
Deng
,
Y.
Tang
,
H.
Shao
,
J.
Zeng
,
W.
Zhou
, and
D.
Liang
,
J. Micromech. Microeng.
24
(
6
),
065025
(
2014
).
9.
Y.
Zhu
,
D. S.
Antao
,
D. W.
Bian
,
S. R.
Rao
,
J. D.
Sircar
,
T.
Zhang
, and
E. N.
Wang
, “Suppressing high-frequency temperature oscillations in microchannels with surface structures,”
Appl. Phys. Lett.
110
(
3
),
033501
(
2017
).
10.
D.
Deng
,
W.
Wan
,
Y.
Qin
,
J.
Zhang
, and
X.
Chu
,
Int. J. Heat Mass Transfer
105
,
338
349
(
2017
).
11.
J.
Xu
,
X.
Yu
, and
W.
Jin
,
Int. J. Heat Mass Transfer
101
,
341
353
(
2016
).
12.
W.
Chang
,
K.
Luo
,
W.
Li
, and
C.
Li
,
Appl. Therm. Eng.
216
,
119064
(
2022
).
13.
A. S.
Kousalya
,
C. N.
Hunter
,
S. A.
Putnam
,
T.
Miller
, and
T. S.
Fisher
, “Photonically enhanced flow boiling in a channel coated with carbon nanotubes,”
Appl. Phys. Lett.
100
(
7
),
071601
(
2012
).
14.
F.
Yang
,
W.
Li
,
X.
Dai
, and
C.
Li
,
Appl. Therm. Eng.
93
,
260
268
(
2016
).
15.
W.
Li
,
Z.
Wang
,
F.
Yang
,
T.
Alam
,
M.
Jiang
,
X.
Qu
,
F.
Kong
,
A. S.
Khan
,
M.
Liu
, and
M.
Alwazzan
,
Adv. Mater.
32
(
2
),
1905117
(
2020
).
16.
W.
Li
,
K.
Luo
,
C.
Li
, and
Y.
Joshi
,
Int. J. Heat Mass Transfer
187
,
122527
(
2022
).
17.
W.
Li
and
Y.
Joshi
,
Langmuir
36
(
41
),
12143
12149
(
2020
).
18.
N.
Rajagopal
,
C.
DiMarino
,
R.
Burgos
,
I.
Cvetkovic
, and
M.
Shawky
, in
Presented at the 2021 IEEE Applied Power Electronics Conference and Exposition (APEC)
(
IEEE
,
2021
).
19.
J.
Ordonez
,
C.
Sailabada
,
J.
Chalfant
,
C.
Chryssostomidis
,
C.
Li
,
K.
Luo
,
E.
Santi
,
B.
Tian
,
A.
Biglo
, and
N.
Rajagopal
, in
Presented at the 2023 IEEE Electric Ship Technologies Symposium (ESTS)
(
IEEE
,
2023
).
20.
D.
Agonafer
,
M. S.
Spector
, and
N.
Miljkovic
,
IEEE Trans. Compon, Packag. Manufact. Technol.
11
(
10
),
1583
1591
(
2021
).
21.
A.
Reeser
,
A.
Bar-Cohen
, and
G.
Hetsroni
,
Int. J. Heat Mass Transfer
78
,
974
985
(
2014
).
22.
F.
Xu
,
H.
Wu
, and
Z.
Liu
,
J. Heat Transfer
140
(
3
),
031501
(
2018
).
23.
J.
Plawsky
,
A.
Fedorov
,
S.
Garimella
,
H.
Ma
,
S.
Maroo
,
L.
Chen
, and
Y.
Nam
,
Nanoscale Microscale Thermophys. Eng.
18
(
3
),
251
269
(
2014
).
24.
H.
Sakashita
,
T.
Tsuruta
,
N.
Nagai
,
S.
Mori
,
M.
Shoji
,
Y.
Haramura
,
H.
Ohtake
,
W.
Liu
,
H.
Umekawa
, and
Y.
Koizumi
, in
Boiling: Research and Advances
(
Elsevier
,
2017
), pp.
145
368
.
25.
Y.
Zhang
,
K.
Deng
,
C.
Wang
,
G.
Su
,
W.
Tian
, and
S.
Qiu
,
Int. J. Therm. Sci.
138
,
459
466
(
2019
).
26.
K.
Rainey
and
S.
You
,
Int. J. Heat Mass Transfer
44
(
14
),
2589
2599
(
2001
).
27.
S.
Fan
and
F.
Duan
,
Int. J. Heat Mass Transfer
150
,
119324
(
2020
).
28.
A. H.
Al-Zaidi
,
M. M.
Mahmoud
, and
T. G.
Karayiannis
,
Int. J. Heat Mass Transfer
140
,
100
128
(
2019
).
29.
A. H.
Al-Zaidi
,
M. M.
Mahmoud
, and
T. G.
Karayiannis
,
Int. J. Heat Mass Transfer
164
,
120587
(
2021
).
30.
A. H.
Al-Zaidi
,
M. M.
Mahmoud
, and
T. G.
Karayiannis
,
Int. J. Heat Mass Transfer
194
,
123101
(
2022
).
31.
P.
Cui
and
Z.
Liu
,
Int. J. Heat Mass Transfer
175
,
121387
(
2021
).
32.
M. D.
Clark
,
J. A.
Weibel
, and
S. V.
Garimella
,
Int. J. Multiphase Flow
161
,
104380
(
2023
).
33.
X.
Zhuang
,
Y.
Xie
,
X.
Li
,
S.
Yue
,
H.
Wang
,
H.
Wang
, and
P.
Yu
,
Appl. Therm. Eng.
225
,
120180
(
2023
).
34.
J.
Lee
and
I.
Mudawar
,
Int. J. Heat Mass Transfer
52
(
13–14
),
3341
3352
(
2009
).
35.
Y.
Lv
,
G.
Xia
,
L.
Cheng
, and
D.
Ma
,
Int. J. Therm. Sci.
166
,
106985
(
2021
).
36.
T.
Alam
,
W.
Li
,
W.
Chang
,
F.
Yang
,
J.
Khan
, and
C.
Li
,
Int. J. Heat Mass Transfer
124
,
829
840
(
2018
).
37.
J.
Ma
,
W.
Li
,
C.
Ren
,
J. A.
Khan
, and
C.
Li
,
Int. J. Heat Mass Transfer
133
,
1219
1229
(
2019
).
38.
X.
Cheng
and
H.
Wu
,
Exp. Therm. Fluid Sci.
142
,
110805
(
2023
).
You do not currently have access to this content.