Microscale-oscillating heat pipes (micro-OHPs) have recently drawn interest for electronic cooling applications due to their compact size and passive operating mechanism. The occurrence of dryout in OHPs, however, at which the working liquid no longer wets the evaporator, limits the maximum operating cooling power, preventing their integration for direct cooling of high heat flux semiconductor chips. Here, we report on high power and high flux operation of silicon-based OHPs by using microchannels with hydraulic diameters of ∼200 μm. Particularly, a micro-OHP with 100 μm channel height is shown to effectively operate at 210 W using a dielectric working fluid, corresponding to an unprecedented cooling power density of 145 W/cm2, without dryout. A distinctive oscillating mode with highly periodic bulk circulations occurs at high heating power and can provide efficient heat dissipation. The flow speed of the liquid under this bulk circulation mode can be as high as 10 m/s. The empirical relationships between the heat transfer rate, oscillating frequency, and device temperatures are studied.

1.
H. J.
Lee
,
R.
Mahajan
,
F.
Sheikh
,
R.
Nagisetty
, and
M.
Deo
, in
Proceedings of the IEEE Custom Integrated Circuits Conference (CICC),
Boston, Massachusetts
,
2020
.
2.
B.
Yang
,
P.
Wang
, and
A.
Bar-Cohen
,
IEEE Trans. Compon., Packag. Technol.
30
(
3
),
432
(
2007
).
3.
L.
Gao
and
S. H.
Bhavnani
,
Appl. Phys. Lett.
111
(
18
),
184105
(
2017
).
4.
B.
Dang
,
M. S.
Bakir
,
D. C.
Sekar
,
J. C. R.
King
, and
J. D.
Meindl
,
IEEE Trans. Adv. Packag.
33
(
1
),
79
(
2010
).
5.
D. B.
Tuckerman
and
R. F. W.
Pease
,
IEEE Electron Device Lett.
2
(
5
),
126
(
1981
).
6.
W.
Li
,
X.
Qu
,
T.
Alam
,
F.
Yang
,
W.
Chang
,
J.
Khan
, and
C.
Li
,
Appl. Phys. Lett.
110
(
1
),
014104
(
2017
).
7.
D.
Back
,
K. P.
Drummond
,
M. D.
Sinanis
,
J. A.
Weibel
,
S. V.
Garimella
,
D.
Peroulis
, and
D. B.
Janes
,
IEEE Trans. Compon., Packag. Manf. Technol.
9
(
7
),
1291
(
2019
).
8.
K. P.
Drummond
,
D.
Back
,
M. D.
Sinanis
,
D. B.
Janes
,
D.
Peroulis
,
J. A.
Weibel
, and
S. V.
Garimella
,
Int. J. Heat Mass Transfer
117
,
319
(
2018
).
9.
W.
Escher
,
T.
Brunschwiler
,
B.
Michel
, and
D.
Poulikakos
,
J. Heat Mass Transfer
132
(
8
),
081402
(
2010
).
10.
S.-W.
Kang
and
D.
Huang
,
J. Micromech. Microeng.
12
(
5
),
525
(
2002
).
11.
S.
Launay
,
V.
Sartre
, and
M.
Lallemand
,
Appl. Therm. Eng.
24
(
2–3
),
233
(
2004
).
12.
D. K.
Harris
,
A.
Palkar
,
G.
Wonacott
,
R.
Dean
, and
F.
Simionescu
,
J. Electron. Packag.
132
(
2
),
021005
(
2010
).
13.
J.-Y.
Jung
,
H.-S.
Oh
,
D. K.
Lee
,
K. B.
Choi
,
S. K.
Dong
, and
H.-Y.
Kwak
,
J. Micromech. Microeng.
18
(
1
),
017002
(
2008
).
14.
D.
Cytrynowicz
,
M.
Hamdan
,
P.
Medis
,
A.
Shuja
,
H. T.
Henderson
,
F. M.
Gerner
, and
E.
Golliher
,
AIP Conf. Proc.
608
,
220
232
(
2002
).
15.
J.
Qu
,
H.
Wu
,
P.
Cheng
,
Q.
Wang
, and
Q.
Sun
,
Int. J. Heat Mass Transfer
110
,
294
(
2017
).
16.
J.
Qu
,
H.-Y.
Wu
, and
Q.
Wang
,
Nanoscale Microscale Thermophys. Eng.
16
(
1
),
37
(
2012
).
17.
M.
Gerber
,
C.
Beddingfield
,
S. O.
Connor
,
M.
Yoo
,
M.
Lee
,
D.
Kang
,
S.
Park
,
C.
Zwenger
,
R.
Darveaux
,
R.
Lanzone
, and
K.
Park
, in
IEEE 61st Electronic Components and Technology Conference (ECTC)
,
Lake Buena Vista, Florida
,
2011
.
18.
H.-Y.
Hsiao
,
C.-M.
Liu
,
H.-W.
Lin
,
T.-C.
Liu
,
C.-L.
Lu
,
Y.-S.
Huang
,
C.
Chen
, and
K. N.
Tu
,
Science
336
(
6084
),
1007
(
2012
).
19.
Z. J.
Zuo
,
M. T.
North
, and
K. L.
Wert
,
IEEE Trans. Compon. Packag. Technol.
24
(
2
),
220
(
2001
).
20.
H. B.
Ma
,
C.
Wilson
,
B.
Borgmeyer
,
K.
Park
,
Q.
Yu
,
S. U. S.
Choi
, and
M.
Tirumala
,
Appl. Phys. Lett.
88
(
14
),
143116
(
2006
).
21.
R.
van Erp
,
R.
Soleimanzadeh
,
L.
Nela
,
G.
Kampitsis
, and
E.
Matioli
,
Nature
585
(
7824
),
211
(
2020
).
22.
D.
Zhang
,
Z.
He
,
J.
Guan
,
S.
Tang
, and
C.
Shen
,
Int. J. Heat Mass Transfer
183
,
122100
(
2022
).
23.
S. M.
Thompson
,
P.
Cheng
, and
H. B.
Ma
,
Int. J. Heat Mass Transfer
54
(
17–18
),
3951
(
2011
).
24.
J.
Lee
and
S. J.
Kim
,
Int. J. Heat Mass Transfer
107
,
204
(
2017
).
25.
J.
Lim
and
S. J.
Kim
,
Appl. Therm. Eng.
196
,
117266
(
2021
).
26.
Y. J.
Lee
and
S. J.
Kim
,
Int. J. Heat Mass Transfer
193
,
122898
(
2022
).
27.
C.-H.
Sun
,
C.-Y.
Tseng
,
K.-S.
Yang
,
S.-K.
Wu
, and
C.-C.
Wang
,
Int. Commun. Heat Mass Transfer
85
,
23
(
2017
).
28.
M. H.
Rausch
,
L.
Kretschmer
,
S.
Will
,
A.
Leipertz
, and
A. P.
Fröba
,
J. Chem. Eng. Data
60
(
12
),
3759
(
2015
).
29.
S. P.
Das
,
V. S.
Nikolayev
,
F.
Lefevre
,
B.
Pottier
,
S.
Khandekar
, and
J.
Bonjour
,
Int. J. Heat Mass Transfer
53
(
19–20
),
3905
(
2010
).
30.
V. S.
Nikolayev
,
J. Heat Transfer
133
(
8
),
081504
(
2011
).
31.
J.
Bae
,
S. Y.
Lee
, and
S. J.
Kim
,
Energy Convers. Manag.
151
,
296
(
2017
).
32.
H.
Peng
,
P. F.
Pai
, and
H.
Ma
,
Int. J. Heat Mass Transfer
69
,
424
(
2014
).
33.
C.
Kamijima
,
Y.
Yoshimoto
,
Y.
Abe
,
S.
Takagi
, and
I.
Kinefuchi
,
Int. J. Heat Mass Transfer
163
,
120415
(
2020
).
34.
H. B.
Ma
,
M. A.
Hanlon
, and
C. L.
Chen
,
Microfluid. Nanofluid.
2
(
2
),
171
(
2006
).
35.
J.
Velardo
,
A.
Date
,
R.
Singh
,
J.
Nihill
,
A.
Date
, and
T. L.
Phan
,
Int. J. Heat Mass Transfer
145
,
118797
(
2019
).
36.
Y. J.
Youn
and
S. J.
Kim
,
Sens. Actuators, A
174
,
189
(
2012
).
You do not currently have access to this content.