Biological systems undergo constant dynamic changes across various spatial and temporal scales. To investigate the intricate biological dynamics in living organisms, there is a strong need for high-speed and high-resolution imaging capabilities with significant imaging depth. In this work, we present high-spatiotemporal resolution microwave-induced thermoacoustic tomography (HR-MTAT) as a method for imaging biological dynamics in deep tissues. HR-MTAT utilizes nanosecond pulsed microwave excitation and ultrasound detection, with appropriate spatial configurations, to achieve high coupling of the sample to the microwaves, to produce images in soft tissue with dielectric contrast and sub-millimeter spatial resolution (230 μm), to a depth of a few centimeters. Notably, by employing a 128-channel parallel signal acquisition and digitization strategy, the field programmable gate array module manages data synthesis, and GPU-based parallel pixel reconstruction facilitates HR-MTAT to accomplish single-frame image reconstruction in an impressive 50 μs. The practical feasibility of HR-MTAT was evaluated in live mice. The results show that HR-MTAT can noninvasively image whole-body small animals (up to 60 mm in depth) with clear resolution of internal organ structures at a frame rate of 100 Hz, without the need for labeling. At this high spatiotemporal resolution, HR-MTAT can capture respiration, heartbeat, and arterial pulse propagation without motion artifacts and track bio-nanoprobes in livers and tumors. These findings demonstrate HR-MTAT's ability to perform dynamic imaging with high contrast and resolution in deep tissues.

1.
L.-F.
Jiang-Xie
,
A.
Drieu
,
K.
Bhasiin
,
D.
Quintero
,
I.
Smirnov
, and
J.
Kipnis
, “
Neuronal dynamics direct cerebrospinal fluid perfusion and brain clearance
,”
Nature
627
,
157
(
2024
).
2.
P.
Grasland-Mongrain
and
C.
Lafon
, “
Review on biomedical techniques for imaging electrical impedance
,”
IRBM
39
(
4
),
243
(
2018
).
3.
S. C. M.
Reinhardt
,
L. A.
Masullo
,
I.
Baudrexel
,
P. R.
Steen
,
R.
Kowalewski
,
A. S.
Eklund
,
S.
Strauss
,
E. M.
Unterauer
,
T.
Schlichthaerle
, and
M. T.
Strauss
, “
Ångström-resolution fluorescence microscopy
,”
Nature
617
(
7962
),
711
(
2023
).
4.
K. D.
Piatkevich
,
S.
Bensussen
,
H-a
Tseng
,
S. N.
Shroff
,
V. G.
Lopez-Huerta
,
D.
Park
,
E. E.
Jung
,
O. A.
Shemesh
,
C.
Straub
, and
H. J.
Gritton
, “
Population imaging of neural activity in awake behaving mice
,”
Nature
574
(
7778
),
413
(
2019
).
5.
L.
Li
,
L.
Zhu
,
C.
Ma
,
L.
Lin
,
J.
Yao
,
L.
Wang
,
K.
Maslov
,
R.
Zhang
,
W.
Chen
,
J.
Shi
, and
L. V.
Wang
,
Nat. Biomed. Eng.
1
(
5
),
0071
(
2017
).
6.
L. V.
Wang
and
S.
Hu
, “
Photoacoustic tomography: In vivo imaging from organelles to organs
,”
Science
335
(
6075
),
1458
(
2012
).
7.
A. M.
Lennon
,
A. H.
Buchanan
,
I.
Kinde
,
A.
Warren
,
A.
Honushefsky
,
A. T.
Cohain
,
D. H.
Ledbetter
,
F.
Sanfilippo
,
K.
Sheridan
, and
D.
Rosica
, “
Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention
,”
Science
369
(
6499
),
eabb9601
(
2020
).
8.
H. N.
Chapman
, “
A new phase for X-ray imaging
,”
Nature
467
(
7314
),
409
(
2010
).
9.
P. L.
Carson
,
C. R.
Meyer
,
A. L.
Scherzinger
, and
T. V.
Oughton
, “
Breast imaging in coronal planes with simultaneous pulse echo and transmission ultrasound
,”
Science
214
(
4525
),
1141
(
1981
).
10.
E.
Macé
,
G.
Montaldo
,
I.
Cohen
,
M.
Baulac
,
M.
Fink
, and
M.
Tanter
, “
Functional ultrasound imaging of the brain
,”
Nat. Methods
8
(
8
),
662
(
2011
).
11.
J.
Liu
,
N.
Liu
,
Y.
Xu
,
M.
Wu
,
H.
Zhang
,
Y.
Wang
,
Y.
Yan
,
A.
Hill
,
R.
Song
, and
Z.
Xu
, “
Bioresorbable shape-adaptive structures for ultrasonic monitoring of deep-tissue homeostasis
,”
Science
383
(
6687
),
1096
(
2024
).
12.
E. C.
Fear
,
X.
Li
,
S. C.
Hagness
, and
M. A.
Stuchly
, “
Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions
,”
IEEE Trans. Biomed. Eng.
49
(
8
),
812
(
2002
).
13.
Z.
Chi
,
Y.
Zhao
,
J.
Yang
,
T.
Li
,
G.
Zhang
, and
H.
Jiang
, “
Thermoacoustic tomography of in vivo human finger joints
,”
IEEE Trans. Biomed. Eng.
66
(
6
),
1598
(
2019
).
14.
Z.
Ji
,
C.
Lou
,
Y.
Shi
,
W.
Ding
,
S.
Yang
, and
D.
Xing
, “
A microwave detection way by electromagnetic and elastic resonance: Breaking the bottleneck of spatial resolution in microwave imaging
,”
Appl. Phys. Lett.
107
(
16
),
164103
(
2015
).
15.
Y.
Zhao
,
T.
Shan
,
Z.
Chi
, and
H.
Jiang
, “
Thermoacoustic tomography of germinal matrix hemorrhage in neonatal mouse cerebrum
,”
J. X-Ray Sci. Technol.
28
(
1
),
83
(
2020
).
16.
H.
Qin
,
Y.
Cui
,
Z.
Wu
,
Q.
Chen
, and
D.
Xing
, “
Real-time thermoacoustic imaging-guidance for breast tumor resection
,”
IEEE Photonics J.
12
(
3
),
3700207
(
2020
).
17.
J. C.
Lin
, “
Microwave auditory effects among US government personnel reporting directional audible and sensory phenomena in Havana
,”
IEEE Access
10
,
44577
(
2022
).
18.
J. C.
Lin
, “
Microwave thermoacoustic tomographic (MTT) imaging
,”
Phys. Med. Biol.
66
(
10
),
10TR02
(
2021
).
19.
C.
Lou
,
S.
Yang
,
Z.
Ji
,
Q.
Chen
, and
D.
Xing
, “
Ultrashort microwave-induced thermoacoustic imaging: A breakthrough in excitation efficiency and spatial resolution
,”
Phys. Rev. Lett.
109
(
21
),
218101
(
2012
).
20.
Y.
Huang
,
M.
Omar
,
W.
Tian
,
H.
Lopez-Schier
,
G. G.
Westmeyer
,
A.
Chmyrov
,
G.
Sergiadis
, and
V.
Ntziachristos
, “
Noninvasive visualization of electrical conductivity in tissues at the micrometer scale
,”
Sci. Adv.
7
(
20
),
eabd1505
(
2021
).
21.
F.
Ye
,
Z.
Ji
,
W.
Ding
,
C.
Lou
,
S.
Yang
, and
D.
Xing
, “
Ultrashort microwave-pumped real-time thermoacoustic breast tumor imaging system
,”
IEEE Trans. Med. Imaging
35
(
3
),
839
(
2016
).
22.
Q.-Y.
Chen
,
Q.
Zhong
,
Z.-Y.
Liu
,
P.
Li
,
G.-T.
Lin
,
Q.-L.
Zheng
,
J.-B.
Wang
,
J.-X.
Lin
,
J.
Lu
, and
L.-L.
Cao
, “
Indocyanine green fluorescence imaging-guided versus conventional laparoscopic lymphadenectomy for gastric cancer: Long-term outcomes of a phase 3 randomised clinical trial
,”
Nat. Commun.
14
(
1
),
7413
(
2023
).
23.
X.
Jiang
,
Q.
Zhou
,
B.
Du
,
S.
Li
,
Y.
Huang
,
Z.
Chi
,
W. M.
Lee
,
M.
Yu
, and
J.
Zheng
, “
Noninvasive monitoring of hepatic glutathione depletion through fluorescence imaging and blood testing
,”
Sci. Adv.
7
(
8
),
eabd9847
(
2021
).
24.
S.
Wang
,
L.
Zhang
,
J.
Zhao
,
M.
He
,
Y.
Huang
, and
S.
Zhao
, “
A tumor microenvironment–induced absorption red-shifted polymer nanoparticle for simultaneously activated photoacoustic imaging and photothermal therapy
,”
Sci. Adv.
7
(
12
),
eabe3588
(
2021
).
25.
Y.-S.
Chen
,
Y.
Zhao
,
C.
Beinat
,
A.
Zlitni
,
E.-C.
Hsu
,
D.-H.
Chen
,
F.
Achterberg
,
H.
Wang
,
T.
Stoyanova
, and
J.
Dionne
, “
Ultra-high-frequency radio-frequency acoustic molecular imaging with saline nanodroplets in living subjects
,”
Nat. Nanotechnol.
16
(
6
),
717
(
2021
).
26.
H.
Nan
and
A.
Arbabian
, “
Stepped-frequency continuous-wave microwave-induced thermoacoustic imaging
,”
Appl. Phys. Lett.
104
(
22
),
224104
(
2014
).
You do not currently have access to this content.