Threshold switching (TS) materials, such as amorphous chalcogenide, have received significant attention for their application in storage class memory and in-memory computing. These materials contribute to efficient data processing and reduced power consumption in data centers. The initial switching process after fabricating a TS device, known as “forming,” has a profound impact on its subsequent TS behavior. However, it remains unclear how TS materials undergo changes in their atomic and electronic structures during the forming process. Consequently, the key factors that govern TS behavior remain obscure, necessitating a deeper understanding of the underlying physics behind TS phenomena. In this Letter, we investigated the forming state of the TS material AlTeN by combining scanning internal photoemission microscopy (SIPM) and ab initio calculations. Thanks to nondestructive evaluation by SIPM measurements, we observed local bandgap narrowing of AlTeN after its forming process. This is an experimental demonstration showing the presence of nuclei of the conductive filament formed in its ON state. Moreover, we conducted an ab initio calculation to reveal the origin of bandgap narrowing. We applied strong electrothermal stresses to the AlTeN model by ab initio molecular dynamics simulation with high electronic and lattice temperatures. By quenching from the electrothermal stress conditions, we reproduced an experimentally observed forming state with a narrowed bandgap. Analysis of the electronic structures of the forming state revealed that the origin of bandgap narrowing is the generation of the valence band top and conduction band bottom stemming from the increased homopolar bonds.

1.
R.
Bez
,
P.
Fantini
, and
A.
Pirovano
, “
Historical review of semiconductor memories
,” in
Semiconductor Memories and Systems
(
Woodhead Publishing
,
2022
), Chap. 1, pp.
1
26
.
2.
R. F.
Freitas
and
W. W.
Wilcke
,
IBM J. Res. Dev.
52
,
439
(
2008
).
3.
A.
Fazio
, in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
Baltimore, MD
,
2009
), pp.
27.7.1
27.7.4
.
4.
G.
Pedretti
and
D.
Ielmini
, “
Computing with nonvolatile memories for artificial intelligence
,” in
Semiconductor Memories and Systems
(
Woodhead Publishing
,
2022
), Chap. 10, pp.
305
334
.
5.
A.
Sebastian
,
M. L.
Gallo
,
G. W.
Burr
et al,
J. Appl. Phys.
124
,
111101
(
2018
).
6.
F.
Pellizzer
and
A.
Redaelli
, “
3DXpoint fundamentals
,” in
Semiconductor Memories and Systems
(
Woodhead Publishing
,
2022
), Chap. 8, pp.
253
276
.
7.
D.
Kau
,
S.
Tang
,
I. V.
Karpov
et al, in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
Baltimore, MD
,
2009
), pp.
27.1.1
27.1.4
.
8.
A.
Fazio
, in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
San Francisco, CA
,
2020
), pp.
24.2.1
24.2.4
.
9.
S. M.
Seo
,
H.
Aikawa
,
S. G.
Kim
et al, in
International Electron Devices Meeting (IEDM)
(
IEEE
,
San Francisco, CA
,
2022
), pp.
10.1.1
10.1.4
.
10.
T.
Kim
,
H.
Choi
,
M.
Kim
et al, in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
San Francisco, CA
,
2018
), pp.
37.1.1
37.1.4
.
11.
S. R.
Ovshinsky
,
Phys. Rev. Lett.
21
,
1450
(
1968
).
12.
F.
Arnaud
,
P.
Zuliani
,
J. P.
Reynard
et al, in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
San Francisco, CA
,
2018
), pp.
18.4.1
18.4.4
.
13.
F.
Arnaud
,
P.
Ferreira
,
F.
Piazza
et al, in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
San Francisco, CA
,
2020
), pp.
24.2.1
24.2.4
.
14.
M. J.
Kang
,
T. J.
Park
,
Y. W.
Kwon
et al, in
IEEE International Electron Devices Meeting
(
IEEE
,
Washington, DC
,
2011
), pp.
3.1.1
3.1.4
.
15.
S.
Lee
,
J.
Yoo
,
J.
Park
et al,
Appl. Phys. Lett.
115
,
233503
(
2019
).
16.
A.
Verdy
,
M.
Bernard
,
J.
Garrione
et al, in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
San Francisco, CA
,
2018
), pp.
37.4.1
37.4.4
.
17.
Z.
Chai
,
W.
Zhang
,
R.
Degraeve
et al, in
Symposium on VLSI Technology
(
IEEE
,
Kyoto, Japan
,
2019
), pp.
T238
T239
.
18.
J.
Keukelier
,
K.
Opsomer
,
T.
Nuytten
et al,
J. Mater. Chem. C
9
,
117
(
2021
).
19.
D.
Adler
,
H. K.
Henisch
, and
S. N.
Mott
,
Rev. Mod. Phys.
50
,
209
(
1978
).
20.
Pumlianmunga
,
R.
Venkatesh
,
E. S. R.
Gopal
et al,
J. Non-Cryst. Solids
452
,
210
(
2016
).
21.
V. G.
Karpov
,
Y. A.
Kryukov
,
I. V.
Karpov
et al,
Phys. Rev. B
78
,
052201
(
2008
).
22.
M.
Nardone
,
V. G.
Karpov
,
D. C. S.
Jackson
et al,
Appl. Phys. Lett.
94
,
103509
(
2009
).
23.
D.
Ielmini
and
Y.
Zhang
,
J. Appl. Phys.
102
,
054517
(
2007
).
24.
D.
Ielmini
,
Phys. Rev. B
78
,
035308
(
2008
).
25.
M.
Le Gallo
,
A.
Athmanathan
,
D.
Krebs
et al,
J. Appl. Phys.
119
,
025704
(
2016
).
26.
B. J.
Kooi
and
M.
Wuttig
,
Adv. Mater.
32
,
1908302
(
2020
).
27.
P.
Noé
,
A.
Verdy
,
F.
d'Acapito
et al,
Sci. Adv.
6
,
eaay2830
(
2020
).
28.
T.
Okumura
and
K.
Shiojima
,
Jpn. J. Appl. Phys., Part 2
28
,
L1108
(
1989
).
29.
K.
Shiojima
and
T.
Okumura
,
Jpn. J. Appl. Phys., Part 1
30
,
2127
(
1991
).
30.
K.
Shiojima
and
T.
Okumura
,
J. Cryst. Growth
103
,
234
(
1990
).
31.
K.
Shiojima
and
T.
Okumura
, in
Proceedings of IEEE 29th International Reliability Physics Symposium
(
IEEE
,
Las Vegas, NV
,
1991
), p.
234
.
32.
K.
Shiojima
,
S.
Yamamoto
,
Y.
Kihara
et al,
Appl. Phys. Exp.
8
,
046502
(
2015
).
33.
S.
Yamamoto
,
Y.
Kihara
, and
K.
Shiojima
,
Phys. Status Solidi B
252
,
1017
(
2015
).
34.
A.
Terano
,
H.
Imadate
, and
K.
Shiojima
,
Mater. Sci. Semicond. Process.
70
,
92
(
2017
).
35.
K.
Shiojima
,
T.
Suemitsu
,
T.
Ozaki
et al,
Jpn. J. Appl. Phys., Part 1
58
,
SCCD13
(
2019
).
36.
K.
Shiojima
,
T.
Hasizume
,
F.
Horikiri
et al,
Phys. Status Solidi B
255
,
1700480
(
2018
).
37.
K.
Shiojima
,
H.
Konishi
,
H.
Imadate
et al,
Jpn. J. Appl. Phys., Part 1
57
,
04FG07
(
2018
).
38.
K.
Shiojima
,
T.
Hashizume
,
M.
Sato
et al,
Jpn. J. Appl. Phys., Part 1
58
,
SBBC02
(
2019
).
39.
K.
Shiojima
,
M.
Maeda
, and
K.
Kurihara
,
Semicond. Sci. Technol.
36
,
034007
(
2021
).
40.
K.
Shiojima
,
Y.
Kawasumi
,
F.
Horikiri
et al,
Jpn. J. Appl. Phys., Part 1
60
,
108003
(
2021
).
41.
K.
Shiojima
,
Y.
Kawasumi
,
Y.
Yasui
et al,
Jpn. J. Appl. Phys., Part 1
61
,
086506
(
2022
).
42.
H.
Imabayashi
,
Y.
Yasui
,
F.
Horikiri
et al,
Jpn. J. Appl. Phys., Part 1
62
,
SA1012
(
2023
).
43.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
44.
N. D.
Mermin
,
Phys. Rev.
137
,
A1441
(
1965
).
45.
A.
Pribram-Jones
,
S.
Pittalis
,
E. K. U.
Gross
et al,
Frontiers and Challenges in Warm Dense Matter
(
Springer
,
2014
), pp.
25
60
.
46.
T. J.
Lenosky
,
S. R.
Bickham
,
J. D.
Kress
et al,
Phys. Rev. B
61
,
1
(
2000
).
47.
S.
Root
,
R. J.
Magnyar
,
J. H.
Carpenter
et al,
Phys. Rev. Lett.
105
,
085501
(
2010
).
48.
M.
Bonitz
,
T.
Dornheim
,
Z. A.
Moldabekov
et al,
Phys. Plasmas
27
,
042710
(
2020
).
49.
T.
Gao
,
J.
Feng
,
H.
Ma
et al,
Appl. Phys. Lett.
114
,
163505
(
2019
).
50.
H.-W.
Ahn
,
D. S.
Jeong
,
B.-K.
Cheong
et al,
Appl. Phys. Lett.
103
,
042908
(
2013
).
51.
J.
Tauc
,
Amorphous and Liquid Semiconductors
(
Springer International Publishing
,
London, UK
,
1974
).
52.
Y.
Sanari
,
T.
Tachizaki
,
Y.
Saito
et al,
Phys. Rev. Lett.
121
,
165702
(
2018
).
53.
J.
Kim
,
W.
Kim
,
J.
Kim
et al,
AIP Adv.
13
,
035221
(
2023
).
54.
D.
Ielmini
,
S.
Lavizzari
,
D.
Sharma
et al, in
IEEE International Electron Devices Meeting
(
IEEE
,
Washington, DC
,
2007
), pp.
939
942
.
55.
P. C.
Chang
,
P. J.
Liao
,
D. W.
Heh
et al, in
IEEE International Reliability Physics Symposium (IRPS)
(
IEEE
,
Dallas, TX
,
2022
), pp.
4A.3-1
4A.3-5
.
56.
A.
Pirovano
,
A. L.
Lacaita
,
F.
Pellizzer
et al,
IEEE Trans. Electron Devices
51
,
714
(
2004
).
57.
Y.
Qi
,
N.
Chen
,
T.
Vasileiadis
et al,
Phys. Rev. Lett.
129
,
135701
(
2022
).
58.
P.
Zalden
,
M. J.
Shu
,
F.
Chen
et al,
Phys. Rev. Lett.
117
,
067601
(
2016
).
59.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558(R)
(
1993
);
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
60.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
61.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
62.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
63.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
64.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
65.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
66.
F.
Tran
and
P.
Blaha
,
Phys. Rev. Lett.
102
,
226401
(
2009
).
67.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
68.
B.
Bhattarai
,
R.
Thapa
, and
D. A.
Drabold
,
Modell. Simul. Mater. Sci. Eng.
27
,
075002
(
2019
).
69.
X.-D.
Li
,
M.
Tian
,
B.-Q.
Wang
et al,
J. Appl. Phys.
134
,
204502
(
2023
).
70.
M.
Kastner
,
Phys. Rev. Lett.
28
,
355
(
1972
).
71.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
(
2011
).
72.
W. H.
Strehlow
and
E. L.
Cook
,
J. Phys. Chem. Ref. Data
2
,
163
200
(
1973
).
73.
L.
Debbichi
,
H.
Kim
,
T.
Björkman
et al,
Phys. Rev. B
93
,
245307
(
2016
).
74.
T.
Kato
and
K.
Tanaka
,
Jpn. J. Appl. Phys., Part 1
44
,
7340
(
2005
).
You do not currently have access to this content.