A fast-switching low-loss field-stop insulated gate bipolar transistor with a dual control gate (DIGBT) of a semi-insulating polycrytalline silicon (SIPOS) material is proposed in this paper. Because the SIPOS has uniform high resistance, it has an approximate linear electric potential distribution. When DIGBT conducts, the higher electric potential on SIPOS causes the P-type drift region (P-drift) to generate an inversion layer of electrons, adjusting the number of carriers and making the generation of non-equilibrium carriers no longer dependent on the doping concentration in P-drift (Nd) but on the electric potential distribution on SIPOS. Therefore, it can solve the contradiction among the breakdown voltage, forward voltage drop [VCE(sat)], turn-off time (toff), and turn-off loss (Eoff) caused by the Nd. Through Technology Computer Aided Design (TCAD) simulation, the VCE(sat) of DIGBT is 30.6% lower than that of SJFS IGBT. Meanwhile, DIGBT reduces the toff by 62.8% while reducing the Eoff by 83.0% compared to SJFS IGBT. In addition, the static latch-up I–V and the forward biased safe operating area of the DIGBT have been significantly improved. This paper adjusts the number of carriers through the characteristics of SIPOS material, enabling the above-mentioned physical phenomena to be applied in insulated gate bipolar transistor power devices and achieving device performance breakthroughs.

1.
T.
Sakano
,
K.
Takao
,
Y.
Iwakaji
,
H.
Itokazu
, and
T.
Matsudai
, “
Ultra-low switching loss triple-gate controlled IGBT
,” in
33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD)
(
IEEE
,
2021
), pp.
363
366
.
2.
Y.
Wu
,
Z.
Li
,
J.
Pan
,
C.
Chen
,
J.
Yu
,
M.
Ren
, and
B.
Zhang
, “
650 V super-junction insulated gate bipolar transistor based on 45 μm ultrathin wafer technology
,”
IEEE Electron Device Lett.
43
(
4
),
592
595
(
2022
).
3.
Z.
Wang
,
Z.
Lin
,
W.
Zeng
,
S.
Hu
, and
J.
Zhou
, “
Comparison of short-circuit safe operating areas between the conventional field-stop IGBT and the superjunction field-stop IGBT
,”
IEEE J. Electron Devices Soc.
10
,
146
151
(
2022
).
4.
M.
Huang
,
B.
Gao
,
Z.
Yang
,
L.
Lai
, and
M.
Gong
, “
A carrier-storage-enhanced superjunction IGBT with ultralow loss and on-state voltage
,”
IEEE Electron Device Lett.
39
(
2
),
264
267
(
2018
).
5.
L.
Sun
,
B.
Duan
, and
Y.
Yang
, “
Novel SOI LIGBT with fast-switching by the electric field modulation
,”
Micro Nano Lett.
15
(
3
),
155
158
(
2020
).
6.
T.
Trajkovic
,
V.
Pathirana
,
N.
Udugampola
,
F.
Udrea
,
C.
Zhu
, and
Y.
Wang
, “
Snap-back free 3.3 kV RC-IGBT with enhanced safe operating area
,” in
33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD)
(
IEEE
,
2021
), pp.
359
362
.
7.
E. R.
Motto
,
J. F.
Donlon
,
H.
Takahashi
,
M.
Tabata
, and
H.
Iwamoto
, “
Characteristics of a 1200 V PT IGBT with trench gate and local life time control
,” in
Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242)
(
IEEE
,
1998
), Vol.
2
, pp.
811
816
.
8.
V. A.
Terekhov
,
D. N.
Nesterov
,
K. A.
Barkov
,
E. P.
Domashevskaya
,
A. V.
Konovalov
,
Y. L.
Fomenko
,
P. V.
Seredin
,
D. L.
Goloshchapov
,
A. I.
Popov
, and
A. D.
Barinov
, “
Bound oxygen influence on the phase composition and electrical properties of semi-insulating silicon films
,”
Mater. Sci. Semicond. Process.
121
,
105287
(
2021
).
9.
Y.
Wang
,
C.
Zhu
,
C.
Wu
, and
J.
Liu
, “
Improving reliability of beveled power semiconductor devices passivated by SIPOS
,”
Microelectron. Rel.
45
(
3
),
535
539
(
2005
).
10.
S. S.
Ang
, “
A power SIPOS MISS device
,”
IEEE Trans. Electron Devices
35
(
8
),
1378
1381
(
1988
).
11.
T.
Stockmeier
and
K.
Lilja
, “
SIPOS-passivation for high voltage power devices with planar junction termination
,” in
Proceedings of the 3rd International Symposium on Power Semiconductor Devices and ICs
(
IEEE
,
1991
), pp.
145
148
.
12.
P.
Mirone
,
L.
Maresca
,
M.
Riccio
,
G.
De Falco
,
G.
Romano
,
A.
Irace
, and
G.
Brehlio
, “
An area-effective termination technique for PT-trench IGBTs
,” in
29th International Conference on Microelectronics Proceedings - MIEL 2014
(
IEEE
,
2014
), pp.
273
276
.
13.
H.
Gris
,
B.
Caussat
,
D.
Cot
,
J.
Durand
, and
P.
Couderc
, “
LP-CVD silicon-based film formation in submicrometer trenches in industrial equipment: Experiments and simulation
,”
Chem. Vap. Deposition
8
(
5
),
213
218
(
2002
).
14.
Z.
Cao
,
B.
Duan
,
T.
Shi
,
S.
Yuan
, and
Y.
Yang
, “
A superjunction U-MOSFET with SIPOS pillar breaking superjunction silicon limit by TCAD simulation study
,”
IEEE Electron Device Lett.
38
(
6
),
794
797
(
2017
).
15.
K. P.
Gan
,
X.
Yang
,
Y.
Liang
,
G.
Samudra
, and
L.
Yong
, “
A simple technology for superjunction device fabrication: Polyflanked VDMOSFET
,”
IEEE Electron Device Lett.
23
(
10
),
627
629
(
2002
).
16.
F.
Udrea
,
G.
Deboy
, and
T.
Fujihira
, “
Superjunction power devices, history, development, and future prospects
,”
IEEE Trans. Electron Devices
64
(
3
),
713
734
(
2017
).
17.
S.
Iwamoto
,
K.
Takahashi
,
H.
Kuribayashi
,
S.
Wakimoto
,
K.
Mochizuki
, and
H.
Nakazawa
, “
Above 500 V class superjunction MOSFETs fabricated by deep trench etching and epitaxial growth
,” in
17th International Symposium on Power Semiconductor Devices and ICs
(
IEEE
,
2005
), pp.
31
34
.
18.
K.-H.
Oh
,
J.
Kim
,
H.
Seo
,
J.
Jung
,
E.
Kim
,
S.-S.
Kim
, and
C.
Yun
, “
Experimental investigation of 650 V superjunction IGBTs
,” in
28th International Symposium on Power Semiconductor Devices and ICs (ISPSD)
(
IEEE
,
2016
), pp.
299
302
.
19.
X.
Zhang
,
J.
Xing
,
J.
Pan
,
Y.
Lu
,
L.
Zhao
,
H.
Li
,
X.
Huang
,
C.
Chen
,
J.
Yang
, and
W.
Kong
, “
Low switch loss and high current density superjunction IGBT based upon deep trench technology
,” in
8th International Symposium on Next Generation Electronics (ISNE)
(
IEEE
,
2019
), pp.
1
3
.
20.
H.
Funaki
,
Y.
Yamaguchi
,
K.
Hirayama
, and
A.
Nakagawa
, “
New 1200 V MOSFET structure on SOI with SIPOS shielding layer
,” in
International Symposium on Power Semiconductor Devices and ICs (ISPSD)
(
IEEE
,
1998
), pp.
25
28
.
21.
K. P.
Gan
,
Y. C.
Liang
,
G. S.
Samudra
,
S. M.
Xu
, and
L.
Yong
, “
Poly flanked VDMOS (PFVDMOS): A superior technology for superjunction devices
,” in
IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No. 01CH37230)
(
IEEE
,
2001
), Vol.
4
, pp.
2156
2159
.
22.
L.
Zhang
,
J.
Zhu
,
W.
Sun
,
M.
Zhao
,
J.
Chen
,
X.
Huang
,
L.
Shi
,
J.
Chen
, and
D.
Ding
, “
Low-loss SOI-LIGBT with dual deep-oxide trenches
,”
IEEE Trans. Electron Devices
64
(
8
),
3282
3286
(
2017
).
23.
W.
Chen
,
Y.
Huang
,
S.
Li
,
Y.
Huang
, and
Z.
Han
, “
A snapback-free and low-loss RC-IGBT with lateral FWD integrated in the terminal region
,”
IEEE Access
7
,
183589
183595
(
2019
).
24.
P.
Xing
,
Y.
Yang
,
X.
Xu
,
C.
Liu
,
R.
Sun
, and
W.
Chen
, “
A low loss trench IGBT with variable doping layer in P-base for improving turn-off capability
,” in
16th International Conference on Solid-State & Integrated Circuit Technology (ICSICT)
(
IEEE
,
2022
), pp.
1
3
.
25.
X.
Luo
,
Q.
Liu
,
J.
Wei
,
L.
Huang
,
T.
Sun
,
Z.
Li
, and
B.
Zhang
, “
A high bidirectional blocking capability insulated-gate bipolar transistor with ultralow loss
,”
IEEE Trans. Electron Devices
65
(
10
),
4729
4733
(
2018
).
26.
Z.
Wu
,
Y.
He
,
X.
Ge
, and
D.
Liu
, “
A fast switching superjunction IGBT with segmented anode NPN
,” in
16th Conference on Industrial Electronics and Applications (ICIEA)
(
IEEE
,
2021
), pp.
633
636
.
You do not currently have access to this content.