High-performance and small-sized heat exchangers have been demanded due to the miniaturization and higher output of electronic devices, lasers, and energy harvesting/storage systems. Graphene nanosheet suspension has attracted attention as a next-generation nanofluid because of its high thermal conductivity and low pressure drop, while being dispersed stably without any additives. Graphene-based nanofluids have been mostly investigated using graphene oxide, and there are a few studies on pure graphene because of the limitation in mass production and stabilization at high concentrations of graphene. In this study, we prepared a 10 wt. % high-concentration few-layer graphene suspension by pulverizing graphite particles. Scanning electron microscopy, atomic force microscopy, and Raman spectra confirmed the few-layer graphene is formed in the suspension. The thermal conductivity of the suspension increased with concentration and suddenly jumped at a specific concentration. Furthermore, a significant improvement in thermal conductivity of >40% compared to base liquid was confirmed at 10 wt. % graphene content. A similar trend was observed for electrical resistance; 10 wt. % graphene suspension showed 62% lower resistance than that of 1 wt. %. These results suggest the percolation of graphene in a liquid, which has not been observed for graphene-based materials in previous research.

1.
M. G.
Khan
and
A.
Fartaj
, “
A review on microchannel heat exchangers and potential applications
,”
Int. J. Energy Res.
35
,
553
582
(
2011
).
2.
H. A.
Mohammed
,
G.
Bhaskaran
,
N. H.
Shuaib
, and
R.
Saidur
, “
Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review
,”
Renewable Sustainable Energy Rev.
15
,
1502
1512
(
2011
).
3.
S.
Simpson
,
A.
Schelfhout
,
C.
Golden
, and
S.
Vafaei
, “
Nanofluid thermal conductivity and effective parameters
,”
Appl. Sci.
9
,
87
(
2018
).
4.
C.
Kleinstreuer
and
Y.
Feng
, “
Experimental and theoretical studies of nanofluid thermal conductivity enhancement: A review
,”
Nanoscale Res. Lett.
6
,
229
(
2011
).
5.
M. M.
Tawfik
, “
Experimental studies of nanofluid thermal conductivity enhancement and applications: A review
,”
Renewable Sustainable Energy Rev.
75
,
1239
1253
(
2017
).
6.
S. P.
Jang
and
S. U. S.
Choi
, “
Role of Brownian motion in the enhanced thermal conductivity of nanofluids
,”
Appl. Phys. Lett.
84
,
4316
4318
(
2004
).
7.
F.
Yang
,
Z.
Zhang
,
L.
Xu
,
Z.
Liu
,
P.
Jin
,
P.
Zhuang
,
M.
Lei
,
J.
Liu
,
J.-H.
Jiang
,
X.
Ouyang
,
F.
Marchesoni
, and
J.
Huang
, “
Controlling mass and energy diffusion with metamaterials
,”
Rev. Mod. Phys.
96
,
015002
(
2024
).
8.
M.
Awais
,
N.
Ullah
,
J.
Ahmad
,
F.
Sikandar
,
M. M.
Ehsan
,
S.
Salehin
, and
A. A.
Bhuiyan
, “
Heat transfer and pressure drop performance of Nanofluid: A state-of-the-art review
,”
Int. J. Thermofluids
9
,
100065
(
2021
).
9.
J. M.
Yin
,
C. W.
Bullard
, and
P. S.
Hrnjak
, “
Single-phase pressure drop measurements in a microchannel heat exchanger heat
,”
Transfer Eng.
23
,
3
12
(
2002
).
10.
V. N.
Manzhai
,
Y. R.
Nasibullina
,
A. S.
Kuchevskaya
, and
A. G.
Filimoshkin
, “
Physico-chemical concept of drag reduction nature in dilute polymer solutions (the Toms effect)
,”
Chem. Eng. Process.
80
,
38
42
(
2014
).
11.
J. L.
Lumley
, “
Drag reduction in turbulent flow by polymer additives
,”
J. Polym. Sci. Macromol. Rev.
7
,
263
290
(
1973
).
12.
J. L.
Zakin
,
B.
Lu
, and
H. W.
Bewersdorff
, “
Surfactant drag reduction
,”
Rev. Chem. Eng.
14
,
253
320
(
1998
).
13.
H.
Cui
and
J. R.
Grace
, “
Flow of pulp fibre suspension and slurries: A review
,”
Int. J. Multiphase Flow
33
,
921
934
(
2007
).
14.
F.-C.
Li
,
Y.
Kawaguchi
, and
K.
Hishida
, “
Investigation on the characteristics of turbulence transport for momentum and heat in a drag-reducing surfactant solution flow
,”
Phys. Fluids
16
,
3281
(
2004
).
15.
Z.
Zhang
,
L.
Xu
,
T.
Qu
,
M.
Lei
,
Z.-K.
Lin
,
X.
Ouyang
,
J.-H.
Jiang
, and
J.
Huang
, “
Diffusion metamaterials
,”
Nat. Rev. Phys.
5
,
218
235
(
2023
).
16.
A. K.
Geim
, “
Graphene: Status and prospects
,”
Science
324
,
1530
1534
(
2009
).
17.
A. A.
Balandin
, “
Thermal properties of graphene and nanostructured carbon materials
,”
Nat. Mater.
10
,
569
581
(
2011
).
18.
K.
Watanabe
and
S.
Ogata
, “
Drag reduction of aqueous suspensions of fine solid matter in pipe flows
,”
AlChE J.
67
(
6
),
e17241
(
2021
).
19.
Z.
Xu
and
C.
Gao
, “
Graphene in macroscopic order: Liquid crystals and wet-spun fibers
,”
Acc. Chem. Res.
47
,
1267
1276
(
2014
).
20.
C.
Vallés
,
R. J.
Young
,
D. J.
Lomax
, and
I. A.
Kinloch
, “
The rheological behaviour of concentrated dispersions of graphene oxide
,”
J. Mater. Sci.
49
,
6311
6320
(
2014
).
21.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field in atomically thin carbon films
,”
Science
306
,
666
669
(
2004
).
22.
E.
Sadeghinezhad
,
M.
Mehrali
,
R.
Saidur
,
M.
Mehrali
,
S.
Tahan Latibari
,
A. R.
Akhiani
, and
H. S. C.
Metselaar
, “
A comprehensive review on graphene nanofluids: Recent research, development and applications
,”
Energy Convers. Manage.
111
,
466
487
(
2016
).
23.
L.
Dong
,
Z.
Chen
,
X.
Zhao
,
J.
Ma
,
S.
Lin
,
M.
Li
,
Y.
Bao
,
L.
Chu
,
K.
Leng
,
H.
Lu
, and
K. P.
Loh
, “
A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water
,”
Nat. Commun.
9
(
9
),
76
(
2018
).
24.
M.
Kole
and
T. K.
Dey
, “
Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids
,”
J. Appl. Phys.
113
,
084307
(
2013
).
25.
M.
Mehrali
,
E.
Sadeghinezhad
,
S. T.
Latibari
,
S. N.
Kazi
,
M.
Mehrali
,
M. N. B. M.
Zubir
, and
H. S. C.
Metselaar
, “
Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets
,”
Nanoscale Res. Lett
9
,
15
(
2014
).
26.
M.
Sandhya
,
D.
Ramasamy
,
K.
Sudhakar
,
K.
Kadirgama
, and
W. S. W.
Harun
, “
Ultrasonication an intensifying tool for preparation of stable nanofluids and study the time influence on distinct properties of graphene nanofluids—A systematic overview
,”
Ultrason. Sonochem.
73
,
105479
(
2021
).
27.
H.
Ma
,
Z.
Shen
,
M.
Yi
,
S.
Ben
,
S.
Liang
,
L.
Liu
,
Y.
Zhang
,
X.
Zhang
, and
S.
Ma
, “
Direct exfoliation of graphite in water with addition of ammonia solution
,”
J. Colloid Interface Sci.
503
,
68
75
(
2017
).
28.
D.
Graf
,
F.
Molitor
,
K.
Ensslin
,
C.
Stampfer
,
A.
Jungen
,
C.
Hierold
, and
L.
Wirtz
, “
Spatially resolved Raman spectroscopy of single- and few-layer graphene
,”
Nano Lett.
7
,
238
242
(
2007
).
29.
L. M.
Malard
,
M. A.
Pimenta
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
, “
Raman spectroscopy in graphene
,”
Phys. Rep.
473
,
51
87
(
2009
).
30.
R.
Taherialekouhi
,
S.
Rasouli
, and
A.
Khosravi
, “
An experimental study on stability and thermal conductivity of water-graphene oxide/aluminum oxide nanoparticles as a cooling hybrid nanofluid
,”
Int. J. Heat Mass Transfer
145
,
118751
(
2019
).
31.
M.
Zadkhast
,
D.
Toghraie
, and
A.
Karimipour
, “
Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation
,”
J. Therm. Anal. Calorim.
129
,
859
867
(
2017
).
32.
S.
Iranmanesh
,
M.
Mehrali
,
E.
Sadeghinezhad
,
B. C.
Ang
,
H. C.
Ong
, and
A.
Esmaeilzadeh
, “
Evaluation of viscosity and thermal conductivity of graphene nanoplatelets nanofluids through a combined experimental–statistical approach using respond surface methodology method
,”
Int. Commun. Heat Mass Transfer
79
,
74
80
(
2016
).
33.
R.
Sadri
,
M.
Hosseini
,
S. N.
Kazi
,
S.
Bagheri
,
A. H.
Abdelrazek
,
G.
Ahmadi
,
N.
Zubir
,
R.
Ahmad
, and
N. I. Z.
Abidin
, “
A facile, bio-based, novel approach for synthesis of covalently functionalized graphene nanoplatelet nano-coolants toward improved thermo-physical and heat transfer properties
,”
J. Colloid Interface Sci.
509
,
140
152
(
2018
).
34.
S.
Rostami
,
A. A.
Nadooshan
, and
A.
Raisi
, “
An experimental study on the thermal conductivity of new antifreeze containing copper oxide and graphene oxide nano-additives
,”
Powder Technol.
345
,
658
667
(
2019
).
35.
A. J.
Marsden
,
D. G.
Papageorgiou
,
C.
Vallés
,
A.
Liscio
,
V.
Palermo
,
M. A.
Bissett
,
R. J.
Young
, and
I. A.
Kinloch
, “
Electrical percolation in graphene-polymer composites
,”
2D Mater.
5
,
032003
(
2018
).
36.
G.
Reina
,
N. D. Q.
Chau
,
Y.
Nishina
, and
A.
Bianco
, “
Graphene oxide size and oxidation degree govern its supramolecular interactions with siRNA
,”
Nanoscale
10
,
5965
5974
(
2018
).
37.
Y.
Xuan
and
Q.
Li
, “
Heat transfer enhancement of nanofluids
,”
Int. J. Heat Fluid Flow
21
,
58
64
(
2000
).
You do not currently have access to this content.