High entropy materials are often entropy stabilized, meaning that the configurational entropy from multiple elements sharing a single lattice site stabilizes the structure. In this work, we study how high-pressure synthesis conditions can stabilize or destabilize a high entropy oxide (HEO). We study the high-pressure and high-temperature phase equilibria of two well-known families of HEOs: the rock salt structured compound (Mg,Co,Ni,Cu,Zn)O, including some cation substitutions, and the spinel structured compound (Cr,Mn,Fe,Co,Ni)3O4. Syntheses were performed at various temperatures, pressures, and oxygen activity levels, resulting in dramatically different synthesis outcomes. In particular, in the rock salt HEO, we observe the competing tenorite and wurtzite phases and the possible formation of a layered rock salt phase while the spinel HEO is highly susceptible to partial decomposition into a mixture of rock salt and corundum phases. At the highest tested pressures, 15 GPa, we discover the transformation of the spinel HEO into a metastable modified ludwigite-type structure with the nominal formula (Cr,Mn,Fe,Co,Ni)4O5. The relationship between the synthesis conditions and the final reaction product is not straightforward. Nonetheless, we conclude that high-pressure conditions provide an important opportunity to synthesize high entropy phases that cannot be formed any other way.

1.
C. M.
Rost
,
E.
Sachet
,
T.
Borman
,
A.
Moballegh
,
E. C.
Dickey
,
D.
Hou
,
J. L.
Jones
,
S.
Curtarolo
, and
J.-P.
Maria
, “
Entropy-stabilized oxides
,”
Nat. Commun.
6
,
8485
(
2015
).
2.
A.
Sarkar
,
P. K.
Mannava
,
L.
Velasco
,
C.
Das
,
B.
Breitung
,
S. S.
Bhattacharya
,
R.
Kruk
, and
H.
Hahn
, “
Determining role of individual cations in high entropy oxides: Structure and reversible tuning of optical properties
,”
Scr. Mater.
207
,
114273
(
2022
).
3.
B. L.
Musicó
,
D.
Gilbert
,
T. Z.
Ward
,
K.
Page
,
E.
George
,
J.
Yan
,
D.
Mandrus
, and
V.
Keppens
, “
The emergent field of high entropy oxides: Design, prospects, challenges, and opportunities for tailoring material properties
,”
APL Mater.
8
(
4
),
040912
(
2020
).
4.
C.
Oses
,
C.
Toher
, and
S.
Curtarolo
, “
High-entropy ceramics
,”
Nat. Rev. Mater.
5
(
4
),
295
309
(
2020
).
5.
S. S.
Aamlid
,
M.
Oudah
,
J.
Rottler
, and
A. M.
Hallas
, “
Understanding the role of entropy in high entropy oxides
,”
J. Am. Chem. Soc.
145
,
5991
(
2022
).
6.
S. J.
McCormack
and
A.
Navrotsky
, “
Thermodynamics of high entropy oxides
,”
Acta Mater.
202
,
1
21
(
2021
).
7.
M.
Fracchia
,
M.
Coduri
,
P.
Ghigna
, and
U.
Anselmi-Tamburini
, “
Phase stability of high entropy oxides: A critical review
,”
J. Eur. Ceram. Soc.
44
(
2
),
585
594
(
2023
).
8.
X.
Yin
,
L.
Xiong
,
S.
Zhang
,
H.
Chen
,
J.
Wen
,
K.
Baldwin
,
A.
Dong
, and
B.
Sun
, “
In-situ observation of single-phase compositionally-complex oxide formation during high-pressure and high-temperature synthesis
,”
Scr. Mater.
242
,
115920
(
2024
).
9.
Z.
Zheng
,
B.
Liang
,
J.
Gao
,
J.
Ren
,
Z.
Liu
,
X.
Hou
,
J.
Sun
, and
S.
Mei
, “
Dielectric properties of (FeCoCrMnZn)3O4 high-entropy oxide at high pressure
,”
Ceram. Int.
49
(
20
),
32521
32527
(
2023
).
10.
B.
Cheng
,
H.
Lou
,
A.
Sarkar
,
Z.
Zeng
,
F.
Zhang
,
X.
Chen
,
L.
Tan
,
K.
Glazyrin
,
H. P.
Liermann
,
J.
Yan
,
L.
Wang
,
R.
Djenadic
,
H.
Hahn
, and
Q.
Zeng
, “
Lattice distortion and stability of (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide under high pressure
,”
Mater. Today Adv.
8
,
100102
(
2020
).
11.
G. H. J.
Johnstone
,
M. U.
González-Rivas
,
K. M.
Taddei
,
R.
Sutarto
,
G. A.
Sawatzky
,
R. J.
Green
,
M.
Oudah
, and
A. M.
Hallas
, “
Entropy engineering and tunable magnetic order in the spinel high-entropy oxide
,”
J. Am. Chem. Soc.
144
,
20590
(
2022
).
12.
A.
Mao
,
H. Z.
Xiang
,
Z. G.
Zhang
,
K.
Kuramoto
,
H.
Zhang
, and
Y.
Jia
, “
A new class of spinel high-entropy oxides with controllable magnetic properties
,”
J. Magn. Magn. Mater.
497
,
165884
(
2020
).
13.
S.
Gražulis
,
A.
Daškevič
,
A.
Merkys
,
D.
Chateigner
,
L.
Lutterotti
,
M.
Quirós
,
N. R.
Serebryanaya
,
P.
Moeck
,
R. T.
Downs
, and
A.
Le Bail
, “
Crystallography open database (COD): An open-access collection of crystal structures and platform for world-wide collaboration
,”
Nucl. Acids Res.
40
(
D1
),
D420
427
(
2012
).
14.
A. A.
Coelho
, “
TOPAS and TOPAS-academic: An optimization program integrating computer algebra and crystallographic objects written in C++
,”
J. Appl. Crystallogr.
51
(
1
),
210
218
(
2018
).
15.
D.
Zagorac
,
H.
Muller
,
S.
Ruehl
,
J.
Zagorac
, and
S.
Rehme
, “
Recent developments in the inorganic crystal structure database: Theoretical crystal structure data and related features
,”
J. Appl. Crystallogr.
52
,
918
925
(
2019
).
16.
K. H.
Hong
,
E.
Solana-Madruga
,
M.
Coduri
, and
J.
Paul Attfield
, “
Complex cation and spin orders in the high-pressure ferrite CoFe3O5
,”
Inorg. Chem.
57
(
22
),
14347
14352
(
2018
).
17.
M.
Fracchia
,
M.
Coduri
,
M.
Manzoli
,
P.
Ghigna
, and
U. A.
Tamburini
, “
Is configurational entropy the main stabilizing term in rock-salt Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O high entropy oxide?
,”
Nat. Commun.
13
(
1
),
2977
(
2022
).
18.
D.
Berardan
,
A. K.
Meena
,
S.
Franger
,
C.
Herrero
, and
N.
Dragoe
, “
Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides
,”
J. Alloys Compd.
704
,
693
700
(
2017
).
19.
A.
Sarkar
,
B.
Eggert
,
R.
Witte
,
J.
Lill
,
L.
Velasco
,
Q.
Wang
,
J.
Sonar
,
K.
Ollefs
,
S. S.
Bhattacharya
,
R. A.
Brand
,
H.
Wende
,
F. M. F.
de Groot
,
O.
Clemens
,
H.
Hahn
, and
R.
Kruk
, “
Comprehensive investigation of crystallographic, spin-electronic and magnetic structure of (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4: Unraveling the suppression of configuration entropy in high entropy oxides
,”
Acta Mater.
226
,
117581
(
2022
).
20.
P. V.
Sushko
,
K. M.
Rosso
,
J. G.
Zhang
,
J.
Liu
, and
M. L.
Sushko
, “
Oxygen vacancies and ordering of D-levels control voltage suppression in oxide cathodes: The case of spinel LiNi0.5Mn1.5O4-δ
,”
Adv. Funct. Mater.
23
(
44
),
5530
5535
(
2013
).
21.
C.
Ling
and
F.
Mizuno
, “
Phase stability of post-spinel compound AMn2O4 (A = Li, Na, or Mg) and its application as a rechargeable battery cathode
,”
Chem. Mater.
25
(
15
),
3062
3071
(
2013
).
22.
A. V.
Iskrina
,
A. V.
Bobrov
, and
A. V.
Spivak
, “
Post-spinel phases in the Earth's mantle
,”
Geochem. Int.
60
(
4
),
311
324
(
2022
).
23.
C.
Gong
,
H.
Zhang
,
W.
Wang
,
L.
Colombo
,
R. M.
Wallace
, and
K.
Cho
, “
Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors
,”
Appl. Phys. Lett.
103
(
5
),
053513
(
2013
).
24.
K.
Kusaba
,
Y.
Syono
, and
T.
Kikegawa
, “
Phase transition of ZnO under high pressure and temperature
,”
Proc. Jpn. Acad., Ser. B
75
(
1
),
1
6
(
1999
).
25.
F.
Tian
,
D.
Duan
,
D.
Li
,
C.
Chen
,
X.
Sha
,
Z.
Zhao
,
B.
Liu
, and
T.
Cui
, “
Miscibility and ordered structures of MgO-ZnO alloys under high pressure
,”
Sci. Rep.
4
(
1
),
5759
(
2014
).
26.
K. C.
Pitike
,
S.
Kc
,
M.
Eisenbach
,
C. A.
Bridges
, and
V. R.
Cooper
, “
Predicting the phase stability of multicomponent high-entropy compounds
,”
Chem. Mater.
32
(
17
),
7507
7515
(
2020
).
27.
Y.
Pu
,
D.
Moseley
,
Z.
He
,
K. C.
Pitike
,
M. E.
Manley
,
J.
Yan
,
V. R.
Cooper
,
V.
Mitchell
,
V. K.
Peterson
,
B.
Johannessen
,
R. P.
Hermann
, and
P.
Cao
, “
(Mg,Mn,Fe,Co,Ni)O: A rocksalt high-entropy oxide containing divalent Mn and Fe
,”
Sci. Adv.
9
(
38
),
eadi8809
(
2023
).
28.
L.
Lin
,
K.
Wang
,
R.
Azmi
,
J.
Wang
,
A.
Sarkar
,
M.
Botros
,
S.
Najib
,
Y.
Cui
,
D.
Stenzel
,
P.
Anitha Sukkurji
,
Q.
Wang
,
H.
Hahn
,
S.
Schweidler
, and
B.
Breitung
, “
Mechanochemical synthesis: Route to novel rock-salt-structured high-entropy oxides and oxyfluorides
,”
J. Mater. Sci.
55
(
36
),
16879
16889
(
2020
).
You do not currently have access to this content.