This study establishes the accuracy and efficacy of the recently developed radiative transfer with reciprocal transactions (R2T2) method for quickly simulating radiation transfer through concentrated thick suspensions of optically hard nanoparticles featuring a large mismatch in refractive and/or absorption indices compared with their surrounding medium. Concentrated suspensions of optically hard nanoparticles exhibit strong light scattering and dependent scattering effects including both near-field interactions among particles and interferences of scattered waves in the far-field. Concentrated suspensions of metallic nanoparticles also exhibit plasmon coupling effect that leads to widening of absorption peak and red-shift in the peak surface plasmon resonance wavelength. However, predicting these complex interactions between EM waves and particles in thick and concentrated suspensions by explicitly solving Maxwell's equations is computationally intensive, if not impossible. Conventional solutions like Lorenz–Mie theory combined with independent scattering approximation do not account for dependent scattering and plasmon coupling. Furthermore, the dense medium radiative transfer theory is a far-field approximation that does not account for near-field effects, leading to significant errors in predictions, as illustrated in this study. By contrast, the R2T2 method's predictions showed excellent agreement with the solutions of Maxwell's equations obtained using the superposition T-matrix method for thin films containing optically hard particles. The method also rigorously accounted for multiple scattering as well as plasmon coupling in thick concentrated suspensions. These results could facilitate the design of plasmonic suspensions used in various energy and environmental applications.

1.
S. K.
Sharma
and
D. J.
Sommerford
,
Light Scattering by Optically Soft Particles: Theory and Applications
(
Springer Science & Business Media
,
Berlin, Germany
,
2006
).
2.
M.
Li
,
S. K.
Cushing
, and
N.
Wu
, “
Plasmon-enhanced optical sensors: A review
,”
Analyst
140
(
2
),
386
406
(
2015
).
3.
H. A.
Atwater
and
A.
Polman
, “
Plasmonics for improved photovoltaic devices
,”
Nat. Mater.
9
(
3
),
205
213
(
2010
).
4.
P.
Subramanyam
,
B.
Meena
,
V.
Biju
,
H.
Misawa
, and
S.
Challapalli
, “
Emerging materials for plasmon-assisted photoelectrochemical water splitting
,”
J. Photochem. Photobiol., C
51
,
100472
(
2022
).
5.
M.
Tariq
,
M. D.
Koch
,
J. W.
Andrews
, and
K. E.
Knowles
, “
Correlation between surface chemistry and optical properties in colloidal Cu2O nanoparticles
,”
J. Phys. Chem. C
124
(
8
), pp.
4810
4819
(
2020
).
6.
Q.
Wang
and
K.
Domen
, “
Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies
,”
Chem. Rev.
120
(
2
),
919
985
(
2019
).
7.
P.
Nagarajan
,
J.
Subramani
,
S.
Suyambazhahan
, and
R.
Sathyamurthy
, “
Nanofluids for solar collector applications: A review
,”
Energy Procedia
61
,
2416
2434
(
2014
).
8.
Z. M.
Zhang
,
Nano/Microscale Heat Transfer
, 2nd ed. (
Springer Nature
,
Switzerland
,
2020
).
9.
T.
Ung
,
L. M.
Liz-Marzan
, and
P.
Mulvaney
, “
Gold nanoparticle thin films
,”
Colloids Surf., A
202
(
2–3
),
119
126
(
2002
).
10.
R.
Wilson
, “
The use of gold nanoparticles in diagnostics and detection
,”
Chem. Soc. Rev.
37
(
9
),
2028
2045
(
2008
).
11.
R. A.
Yalçın
,
E.
Blandre
,
K.
Joulain
, and
J.
Drévillon
, “
Colored radiative cooling coatings with nanoparticles
,”
ACS Photonics
7
(
5
),
1312
1322
(
2020
).
12.
T.
Galy
,
D.
Huang
, and
L.
Pilon
, “
Revisiting independent versus dependent scattering regimes in suspensions or aggregates of spherical particles
,”
J. Quant. Spectrosc. Radiat. Transfer
246
,
106924
(
2020
).
13.
W.
Vargas
,
P.
Greenwood
,
J.
Otterstedt
, and
G.
Niklasson
, “
Light scattering in pigmented coatings: Experiments and theory
,”
Sol. Energy
68
(
6
),
553
561
(
2000
).
14.
R. A.
Yalcin
,
T.
Lee
,
G. N.
Kashanchi
,
J.
Markkanen
,
R.
Martinez
,
S. H.
Tolbert
, and
L.
Pilon
, “
Dependent scattering in thick and concentrated colloidal suspensions
,”
ACS Photonics
9
(
10
),
3318
3332
(
2022
).
15.
P. K.
Jain
,
X.
Huang
,
I. H. El
Sayed
, and
M. A.
El-Sayed
, “
Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems
,”
Plasmonics
2
,
107
118
(
2007
).
16.
M.
Kim
,
J. H.
Lee
, and
J. M.
Nam
, “
Plasmonic photothermal nanoparticles for biomedical applications
,”
Adv. Sci.
6
(
17
),
1900471
(
2019
).
17.
S.
Pillai
and
M.
Green
, “
Plasmonics for photovoltaic applications
,”
Sol. Energy Mater. Sol. Cells
94
(
9
),
1481
1486
(
2010
).
18.
J.
Boken
,
P.
Khurana
,
S.
Thatai
,
D.
Kumar
, and
S.
Prasad
, “
Plasmonic nanoparticles and their analytical applications: A review
,”
Appl. Spectrosc. Rev.
52
(
9
),
774
820
(
2017
).
19.
M.
Abdelrahman
,
P.
Fumeaux
, and
P.
Suter
, “
Study of solid-gas-suspensions used for direct absorption of concentrated solar radiation
,”
Sol. Energy
22
(
1
),
45
48
(
1979
).
20.
F. J.
Miller
and
R. W.
Koenigsdorff
, “
Thermal modeling of a small-particle solar central receiver
,”
J. Sol. Energy Eng.
122
(
1
),
23
29
(
2000
).
21.
H.
Tyagi
,
P.
Phelan
, and
R.
Prasher
, “
Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector
,”
J. Sol. Energy Eng.
131
(
4
),
041004
(
2009
).
22.
M. F.
Modest
and
S.
Mazumder
,
Radiative Heat Transfer
, 4th ed. (
Academic Press
,
New York
,
2021
).
23.
M. I.
Mishchenko
, “
Asymmetry parameters of the phase function for densely packed scattering grains
,”
J. Quant. Spectrosc. Radiat. Transfer
52
(
1
),
95
110
(
1994
).
24.
D. M.
Sullivan
,
Electromagnetic Simulation Using the FDTD Method
(
John Wiley & Sons
,
Hoboken, NJ
,
2013
).
25.
A.
Egel
,
L.
Pattelli
,
G.
Mazzamuto
,
D. S.
Wiersma
, and
U.
Lemmer
, “
CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres
,”
J. Quant. Spectrosc. Radiat. Transfer
199
,
103
110
(
2017
).
26.
S. C.
Lee
, “
Dependent vs independent scattering in fibrous composites containing parallel fibers
,”
J. Thermophys. Heat Transfer
8
(
4
),
641
646
(
1994
).
27.
J.
Zeng
and
Y.
Xuan
, “
Analysis on interaction between solar light and suspended nanoparticles in nanofluids
,”
J. Quant. Spectrosc. Radiat. Transfer
269
,
107692
(
2021
).
28.
Z.
Aoyu
,
W.
Fuqiang
,
D.
Yan
,
Y.
Dongling
, and
X.
Weixin
, “
Dependent scattering criterion modification of disordered dispersed particulate medium with the consideration of particle random distribution and high complex refractive index effects
,”
Int. J. Heat Mass Transfer
197
,
123331
(
2022
).
29.
K.
Muinonen
,
J.
Markkanen
,
T.
Väisänen
,
J.
Peltoniemi
, and
A.
Penttilä
, “
Multiple scattering of light in discrete random media using incoherent interactions
,”
Opt. Lett.
43
(
4
),
683
686
(
2018
).
30.
T.
Väisänen
,
J.
Markkanen
,
A.
Penttilä
, and
K.
Muinonen
, “
Radiative transfer with reciprocal transactions: Numerical method and its implementation
,”
PLoS One
14
(
1
),
e0210155
(
2019
).
31.
J.
Markkanen
and
A. J.
Yuffa
, “
Fast superposition T-matrix solution for clusters with arbitrarily-shaped constituent particles
,”
J. Quant. Spectrosc. Radiat. Transfer
189
,
181
188
(
2017
).
32.
R.
Martinez
,
A.
Bhanawat
,
R. A.
Yalcin
, and
L.
Pilon
, “
Rigorous accounting for dependent scattering in thick and concentrated nanoemulsions
,”
J. Phys. Chem. C
128
(
15
),
6419
6430
(
2024
).
33.
Z.
Huang
and
X.
Ruan
, “
Nanoparticle embedded double-layer coating for daytime radiative cooling
,”
Int. J. Heat Mass Transfer
104
,
890
896
(
2017
).
34.
J.
Loste
,
J.-M.
Lopez-Cuesta
,
L.
Billon
,
H.
Garay
, and
M.
Save
, “
Transparent polymer nanocomposites: An overview on their synthesis and advanced properties
,”
Prog. Polym. Sci.
89
,
133
158
(
2019
).
35.
L. J.
Romasanta
,
L.
D'alençon
,
S.
Kirchner
,
C.
Pradère
, and
J.
Leng
, “
Thin coatings of cerium oxide nanoparticles with anti-reflective properties
,”
Appl. Sci.
9
(
18
),
3886
(
2019
).
36.
H. U.
Yang
,
J.
D'Archangel
,
M. L.
Sundheimer
,
E.
Tucker
,
G. D.
Boreman
, and
M. B.
Raschke
, “
Optical dielectric function of silver
,”
Phys. Rev. B
91
(
23
),
235137
(
2015
).
You do not currently have access to this content.