To enhance the emission of GaN-based Micro-LEDs (μLEDs), we etched uniform nanorods (NRs) on the μLED surface and filled the nanorod gaps with spin-on glass (SOG) containing mixed Ag nanoparticles (NPs). The nanorod structure creates a conducive environment for close interaction between Ag NPs and quantum wells (QWs), facilitating the coupling of Ag NPs as localized surface plasmons (LSPs) with the QWs to enhance light emission. The SOG acts as an insulating layer between Ag NPs and NRs, preventing electron leakage, while also serving as a planarization material for the nanorod structure. This configuration allows for the fabrication of a planar Indium Tin Oxide layer without short-circuiting the nanorod structure. Compared to traditional planar Micro-LEDs, NR-μLEDs with SOG-encased Ag NPs exhibit a 50% increase in electroluminescence (EL) intensity and a 56% increase in photoluminescence (PL) intensity. This work paves the way for broader applications of LSP in μLEDs.

1.
S.
Kang
,
H.
Lee
,
H.
Wang
et al, “
Self-powered flexible full-color display via dielectric-tuned hybrimer triboelectric nanogenerators
,”
ACS Energy Lett.
6
,
4097
(
2021
).
2.
H.
Lee
,
D.
Lee
,
T.
Lee
et al, “
Siloxane hybrid material-encapsulated highly robust flexible μLEDs for biocompatible lighting applications
,”
ACS Appl. Mater. Interfaces
14
,
28258
(
2022
).
3.
W.
Meng
,
F.
Xu
,
Z.
Yu
et al, “
Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix
,”
Nat. Nanotechnol.
16
,
1231
(
2021
).
4.
L.
Han
,
S.
Ogier
,
J.
Li
et al, “
Wafer-scale organic-on-III-V monolithic heterogeneous integration for active-matrix micro-LED displays
,”
Nat. Commun.
14
,
6985
(
2023
).
5.
L.
Qi
,
P.
Li
,
X.
Zhang
et al, “
Monolithic full-color active-matrix micro-LED micro-display using InGaN/AlGaInP heterogeneous integration
,”
Light
12
,
258
(
2023
).
6.
Y.
Huang
,
Z.
Guo
,
X.
Wang
et al, “
GaN-based high-response frequency and high-optical power matrix micro-LED for visible light communication
,”
IEEE Electron. Device. Lett.
41
,
1536
(
2020
).
7.
S.
Zhu
,
X.
Shan
,
R.
Lin
et al, “
Characteristics of GaN-on-Si green micro-LED for wide color gamut display and high-speed visible light communication
,”
ACS Photonics
10
,
92
(
2023
).
8.
T.
Fujii
,
Y.
Gao
,
R.
Sharma
et al, “
Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening
,”
Appl. Phys. Lett.
84
,
855
(
2004
).
9.
A.
Pandey
,
J.
Min
,
M.
Reddeppa
et al, “
An ultrahigh efficiency excitonic micro-LED
,”
Nano Lett.
23
,
1680
(
2023
).
10.
Y.
Boussadi
,
N.
Rochat
,
J.
Barnes
et al, “
Investigation of sidewall damage induced by reactive ion etching on AlGaInP MESA for micro-LED application
,”
J. Lumin.
234
,
117937
(
2021
).
11.
M.
Ke
,
C.
Wang
,
L.
Chen
et al, “
Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays
,”
IEEE J. Sel. Top. Quantum Electron
15
,
1242
(
2009
).
12.
Z.
Du
,
E.
Chen
,
H.
Feng
et al, “
Efficiency improvement of GaN-based micro-light-emitting diodes embedded with Ag NPs into a periodic arrangement of nano-hole channel structure by ultra close range localized surface plasmon coupling
,”
Nanotechnology
33
,
495202
(
2022
).
13.
Y.
Kuo
and
C.
Yang
, “
Theoretical/numerical studies of the nanoscale-cavity effects on dipole emission, Förster resonance energy transfer, and surface plasmon coupling
,”
Plasmonics
19
,
273
(
2023
).
14.
P.
Törmä
and
W.
Barnes
, “
Strong coupling between surface plasmon polaritons and emitters: A review
,”
Rep. Prog. Phys.
78
,
013901
(
2014
).
15.
K.
Okamoto
,
I.
Niki
,
A.
Shvartser
et al, “
Surface-plasmon-enhanced light emitters based on InGaN quantum wells
,”
Nat. Mater.
3
,
601
(
2004
).
16.
W.
Barnes
, “
Turning the tables on surface plasmons
,”
Nat. Mater.
3
(
3
),
588
589
(
2004
).
17.
Z.
Du
,
H.
Feng
,
Y.
Liu
et al, “
Localized surface plasmon coupling nanorods with graphene as a transparent conductive electrode for micro light-emitting diodes
,”
IEEE Electron. Device. Lett.
43
,
2133
(
2022
).
18.
L.
Jang
,
D.
Jeon
,
T.
Sahoo
et al, “
Energy coupling processes in InGaN/GaN nanopillar light emitting diodes embedded with Ag and Ag/SiO2 nanoparticles
,”
J. Mater. Chem.
22
,
21749
(
2012
).
19.
L.
Jang
,
D.
Jeon
,
M.
Kim
et al, “
Investigation of optical and structural stability of localized surface plasmon mediated light-emitting diodes by ag and Ag/SiO2 nanoparticles
,”
Adv. Funct. Mater.
22
,
2728
(
2012
).
20.
K.
Xu
,
C.
Xu
,
Y.
Xie
et al, “
GaN nanorod light emitting diodes with suspended graphene transparent electrodes grown by rapid chemical vapor deposition
,”
Appl. Phys. Lett
103
,
222105
(
2013
).
21.
Z.
Li
,
J.
Kang
, and
Y.
Zhang
, “
The fabrication of GaN-based nanorod light-emitting diodes with multilayer graphene transparent electrodes
,”
J. Appl. Phys.
113
,
234302
(
2013
).
22.
H.
Kim
,
Y.
Cho
,
H.
Lee
et al, “
High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multi-quantum-well nanorod arrays
,”
Nano Lett.
4
,
1059
(
2004
).
23.
S.
Chao
,
L.
Yeh
,
R.
Wu
et al, “
Novel patterned sapphire substrates for enhancing the efficiency of GaN-based light-emitting diodes
,”
RSC Adv.
10
,
16284
(
2020
).
24.
H.
Xu
,
Z.
Zhou
,
A.
Fang
et al, “
Effect of ITO/SiO2 double-layer film thickness on the optoelectronic performance of metal-doped ITO near-UV LED
,”
Appl. Phys. A
129
,
587
(
2023
).
You do not currently have access to this content.