Target skyrmions (TSks) are topological spin textures where the out-of-plane component of the magnetization twists an integer number of k- π rotations. Based on a magnetic multilayer stack in the form of n × [CoFeB/MgO/Ta], engineered to host topological spin textures via dipole and DMI energies, we have stabilized 1  π, 2  π, and 3  π target skyrmions by tuning material properties and thermal-excitations close to room temperature. The nucleated textures, imaged via Kerr and Magnetic Force Microscopies, are stable at zero magnetic field and robust within a range of temperatures (tens of Kelvin) close to room temperature (RT = 292 K) and over long time scales (months). Under applied field (mT), the TSks collapse into the central skyrmion core, which resists against higher magnetic fields ( 2  × TSk annihilation field), as the core is topologically protected. Micromagnetic simulations support our experimental findings, showing no TSk nucleation at 0 K, but a  30  % probability at 300 K for the experimental sample parameters. Our work provides a simple method to tailor spin textures in continuous films, enabling free movement in 2D space and creating a platform transferable to technological applications where the dynamics of the topological textures can be exploited beyond geometrical confinements.

1.
J. P.
Liu
,
Z.
Zhang
, and
G.
Zhao
,
Skyrmions: Topological Structures, Properties, and Applications
(
CRC Press
,
2016
).
2.
A.
Fert
,
N.
Reyren
, and
V.
Cros
, “
Magnetic skyrmions: Advances in physics and potential applications
,”
Nat. Rev. Mater.
2
,
1
15
(
2017
).
3.
G.
Finocchio
,
F.
Büttner
,
R.
Tomasello
,
M.
Carpentieri
, and
M.
Kläui
, “
Magnetic skyrmions: From fundamental to applications
,”
J. Phys. D
49
,
423001
(
2016
).
4.
K.
Everschor-Sitte
,
J.
Masell
,
R. M.
Reeve
, and
M.
Kläui
, “
Perspective: Magnetic skyrmions—Overview of recent progress in an active research field
,”
J. Appl. Phys.
124
,
240901
(
2018
).
5.
Z.
Wang
,
Y.
Su
,
S.-Z.
Lin
, and
C. D.
Batista
, “
Meron, skyrmion, and vortex crystals in centrosymmetric tetragonal magnets
,”
Phys. Rev. B
103
,
104408
(
2021
).
6.
F.
Zheng
,
H.
Li
,
S.
Wang
,
D.
Song
,
C.
Jin
,
W.
Wei
,
A.
Kovács
,
J.
Zang
,
M.
Tian
,
Y.
Zhang
et al, “
Direct imaging of a zero-field target skyrmion and its polarity switch in a chiral magnetic nanodisk
,”
Phys. Rev. Lett.
119
,
197205
(
2017
).
7.
D.
Cortés-Ortuño
,
N.
Romming
,
M.
Beg
,
K.
Von Bergmann
,
A.
Kubetzka
,
O.
Hovorka
,
H.
Fangohr
, and
R.
Wiesendanger
, “
Nanoscale magnetic skyrmions and target states in confined geometries
,”
Phys. Rev. B
99
,
214408
(
2019
).
8.
S.
Komineas
and
N.
Papanicolaou
, “
Skyrmion dynamics in chiral ferromagnets
,”
Phys. Rev. B
92
,
064412
(
2015
).
9.
S.
Li
,
J.
Xia
,
X.
Zhang
,
M.
Ezawa
,
W.
Kang
,
X.
Liu
,
Y.
Zhou
, and
W.
Zhao
, “
Dynamics of a magnetic skyrmionium driven by spin waves
,”
Appl. Phys. Lett.
112
,
142404
(
2018
).
10.
X.
Zhang
,
J.
Xia
,
Y.
Zhou
,
D.
Wang
,
X.
Liu
,
W.
Zhao
, and
M.
Ezawa
, “
Control and manipulation of a magnetic skyrmionium in nanostructures
,”
Phys. Rev. B
94
,
094420
(
2016
).
11.
J.
Tang
,
Y.
Wu
,
W.
Wang
,
L.
Kong
,
B.
Lv
,
W.
Wei
,
J.
Zang
,
M.
Tian
, and
H.
Du
, “
Magnetic skyrmion bundles and their current-driven dynamics
,”
Nat. Nanotechnol.
16
,
1086
1091
(
2021
).
12.
B.
Göbel
,
A. F.
Schäffer
,
J.
Berakdar
,
I.
Mertig
, and
S. S.
Parkin
, “
Electrical writing, deleting, reading, and moving of magnetic skyrmioniums in a racetrack device
,”
Sci. Rep.
9
,
12119
(
2019
).
13.
K.
Litzius
,
I.
Lemesh
,
B.
Krüger
,
P.
Bassirian
,
L.
Caretta
,
K.
Richter
,
F.
Büttner
,
K.
Sato
,
O. A.
Tretiakov
,
J.
Förster
et al, “
Skyrmion hall effect revealed by direct time-resolved x-ray microscopy
,”
Nat. Phys.
13
,
170
175
(
2017
).
14.
H.
Vigo-Cotrina
and
A.
Guimarães
, “
Switching of skyrmioniums induced by oscillating magnetic field pulses
,”
J. Magn. Magn. Mater.
509
,
166895
(
2020
).
15.
N.
Kent
,
N.
Reynolds
,
D.
Raftrey
,
I. T.
Campbell
,
S.
Virasawmy
,
S.
Dhuey
,
R. V.
Chopdekar
,
A.
Hierro-Rodriguez
,
A.
Sorrentino
,
E.
Pereiro
et al, “
Creation and observation of hopfions in magnetic multilayer systems
,”
Nat. Commun.
12
,
1562
(
2021
).
16.
M.
Grelier
,
F.
Godel
,
A.
Vecchiola
,
S.
Collin
,
K.
Bouzehouane
,
A.
Fert
,
V.
Cros
, and
N.
Reyren
, “
Three-dimensional skyrmionic cocoons in magnetic multilayers
,”
Nat. Commun.
13
,
6843
(
2022
).
17.
K.
Ran
,
Y.
Liu
,
Y.
Guang
,
D. M.
Burn
,
G.
van der Laan
,
T.
Hesjedal
,
H.
Du
,
G.
Yu
, and
S.
Zhang
, “
Creation of a chiral bobber lattice in helimagnet-multilayer heterostructures
,”
Phys. Rev. Lett.
126
,
017204
(
2021
).
18.
P.
Fischer
,
D.
Sanz-Hernández
,
R.
Streubel
, and
A.
Fernández-Pacheco
, “
Launching a new dimension with 3D magnetic nanostructures
,”
APL Mater.
8
,
010701
(
2020
).
19.
A.
Fernández-Pacheco
,
R.
Streubel
,
O.
Fruchart
,
R.
Hertel
,
P.
Fischer
, and
R. P.
Cowburn
, “
Three-dimensional nanomagnetism
,”
Nat. Commun.
8
,
1
14
(
2017
).
20.
D.
Marković
,
A.
Mizrahi
,
D.
Querlioz
, and
J.
Grollier
, “
Physics for neuromorphic computing
,”
Nat. Rev. Phys.
2
,
499
510
(
2020
).
21.
Z.
Zhang
,
K.
Lin
,
Y.
Zhang
,
A.
Bournel
,
K.
Xia
,
M.
Kläui
, and
W.
Zhao
, “
Magnon scattering modulated by omnidirectional hopfion motion in antiferromagnets for meta-learning
,”
Sci. Adv.
9
,
eade7439
(
2023
).
22.
M.
Jaafar
,
J.
Gómez-Herrero
,
A.
Gil
,
P.
Ares
,
M.
Vázquez
, and
A.
Asenjo
, “
Variable-field magnetic force microscopy
,”
Ultramicroscopy
109
,
693
699
(
2009
).
23.
N.
Kent
,
R.
Streubel
,
C.-H.
Lambert
,
A.
Ceballos
,
S.-G.
Je
,
S.
Dhuey
,
M.-Y.
Im
,
F.
Büttner
,
F.
Hellman
,
S.
Salahuddin
et al, “
Generation and stability of structurally imprinted target skyrmions in magnetic multilayers
,”
Appl. Phys. Lett.
115
,
112404
(
2019
).
24.
Y.
Zhang
,
M.
Shi
,
W.
Wang
,
X.
Xu
,
M.
Tian
,
D.
Song
, and
H.
Du
, “
Room-temperature zero-field k π-skyrmions and their field-driven evolutions in chiral nanodisks
,”
Nano Lett.
23
,
10205
10212
(
2023
).
25.
S.
Rohart
,
J.
Miltat
, and
A.
Thiaville
, “
Path to collapse for an isolated néel skyrmion
,”
Phys. Rev. B
93
,
214412
(
2016
).
26.
A. V.
Ognev
,
A. G.
Kolesnikov
,
Y. J.
Kim
,
I. H.
Cha
,
A. V.
Sadovnikov
,
S.
Nikitov
,
I.
Soldatov
,
A.
Talapatra
,
J.
Mohanty
,
M.
Mruczkiewicz
et al, “
Magnetic direct-write skyrmion nanolithography
,”
ACS Nano
14
,
14960
14970
(
2020
).
27.
K.
Nakamura
and
A. O.
Leonov
, “
Communicating skyrmions as the main mechanism underlying skyrmionium (meta) stability in quasi-two-dimensional chiral magnets
,” arXiv:2404.10189 (
2024
).
28.
E. M.
Jefremovas
,
K.
Leutner
,
M. G.
Fischer
,
J.
Marqués-Marchán
,
T. B.
Winkler
,
A.
Asenjo
,
R.
Frömter
,
J.
Sinova
, and
M.
Kläui
, “
The role of magnetic dipolar interactions in skyrmion lattices
,” arXiv:2407.00539 (
2024
).
29.
J.
Lucassen
,
M. J.
Meijer
,
O.
Kurnosikov
,
H. J.
Swagten
,
B.
Koopmans
,
R.
Lavrijsen
,
F.
Kloodt-Twesten
,
R.
Frömter
, and
R. A.
Duine
, “
Tuning magnetic chirality by dipolar interactions
,”
Phys. Rev. Lett.
123
,
157201
(
2019
).
30.
S.
Woo
,
K.
Litzius
,
B.
Krüger
,
M.-Y.
Im
,
L.
Caretta
,
K.
Richter
,
M.
Mann
,
A.
Krone
,
R. M.
Reeve
,
M.
Weigand
et al, “
Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets
,”
Nat. Mater.
15
,
501
506
(
2016
).
31.
Y.-H.
Wang
,
W.-C.
Chen
,
S.-Y.
Yang
,
K.-H.
Shen
,
C.
Park
,
M.-J.
Kao
, and
M.-J.
Tsai
, “
Interfacial and annealing effects on magnetic properties of cofeb thin films
,”
J. Appl. Phys.
99
,
08M307
(
2006
).
32.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F.
Garcia-Sanchez
, and
B.
Van Waeyenberge
, “
The design and verification of MuMax3
,”
AIP Adv.
4
,
107133
(
2014
).
33.
J.
Zázvorka
,
F.
Jakobs
,
D.
Heinze
,
N.
Keil
,
S.
Kromin
,
S.
Jaiswal
,
K.
Litzius
,
G.
Jakob
,
P.
Virnau
,
D.
Pinna
et al, “
Thermal skyrmion diffusion used in a reshuffler device
,”
Nat. Nanotechnol.
14
,
658
661
(
2019
).
34.
A.
Casiraghi
,
H.
Corte-León
,
M.
Vafaee
,
F.
Garcia-Sanchez
,
G.
Durin
,
M.
Pasquale
,
G.
Jakob
,
M.
Kläui
, and
O.
Kazakova
, “
Individual skyrmion manipulation by local magnetic field gradients
,”
Commun. Phys.
2
,
145
(
2019
).
35.
Y.
Ge
,
J.
Rothörl
,
M. A.
Brems
,
N.
Kerber
,
R.
Gruber
,
T.
Dohi
,
M.
Kläui
, and
P.
Virnau
, “
Constructing coarse-grained skyrmion potentials from experimental data with iterative boltzmann inversion
,”
Commun. Phys.
6
,
30
(
2023
).
36.
K.
Ohara
,
X.
Zhang
,
Y.
Chen
,
Z.
Wei
,
Y.
Ma
,
J.
Xia
,
Y.
Zhou
, and
X.
Liu
, “
Confinement and protection of skyrmions by patterns of modified magnetic properties
,”
Nano Lett.
21
,
4320
4326
(
2021
).
37.
Y.
Gao
, “
Aging of magnetic skyrmions in a confined geometry
,”
AIP Adv.
14
,
045304
(
2024
).
You do not currently have access to this content.