We propose to implement a hybrid multi-qubit quantum phase gate based on a setup comprising multiple microwave cavities coupled to a common superconducting transmon qutrit in the circuit quantum electrodynamics. The function of this hybrid quantum phase gate is that a phase related to the total number of cavities in non-vacuum state will be introduced when the transmon qubit is in an excited state. Furthermore, we propose an application, quantum voting machine, with this hybrid quantum gate. This scheme is scalable and simple to operate, requiring just a single step and necessitating only the reading of quantum states of one target qubit. While for quantum voting machine, it ensures the verifiability of the voting results through the measurement of the phase information of the target qubit. Additionally, the anonymity of the voters is ensured as the voting outcome is solely tied to the total number of affirmative votes. Numerical simulations indicate the feasibility of this hybrid quantum gate and quantum voting machine within the current quantum technology.

1.
L. K.
Grover
, “
Quantum computers can search rapidly by using almost any transformation
,”
Phys. Rev. Lett.
80
,
4329
(
1998
).
2.
W.-Q.
Liu
,
H.-R.
Wei
, and
L.-C.
Kwek
, “
Universal quantum multi-qubit entangling gates with auxiliary spaces
,”
Adv. Quantum Technol.
5
,
2100136
(
2022
).
3.
P.
Baßler
,
M.
Zipper
,
C.
Cedzich
,
M.
Heinrich
,
P. H.
Huber
,
M.
Johanning
, and
M.
Kliesch
, “
Synthesis of and compilation with time-optimal multi-qubit gates
,”
Quantum
7
,
984
(
2023
).
4.
X.-Q.
Zhou
,
T. C.
Ralph
,
P.
Kalasuwan
,
M.
Zhang
,
A.
Peruzzo
,
B. P.
Lanyon
, and
J. L.
O'brien
, “
Adding control to arbitrary unknown quantum operations
,”
Nat. Commun.
2
,
413
(
2011
).
5.
T.
Graham
,
Y.
Song
,
J.
Scott
,
C.
Poole
,
L.
Phuttitarn
,
K.
Jooya
,
P.
Eichler
,
X.
Jiang
,
A.
Marra
, and
B.
Grinkemeyer
, “
Multi-qubit entanglement and algorithms on a neutral-atom quantum computer
,”
Nature
604
,
457
462
(
2022
).
6.
V. V.
Arsoski
, “
Implementing multi-controlled x gates using the quantum Fourier transform
,”
Quantum Inf. Process.
23
,
1
19
(
2024
).
7.
E.
Zahedinejad
,
J.
Ghosh
, and
B. C.
Sanders
, “
High-fidelity single-shot Toffoli gate via quantum control
,”
Phys. Rev. Lett.
114
,
200502
(
2015
).
8.
F.
Diker
,
F.
Ozaydin
, and
M.
Arik
, “
Enhancing the w state fusion process with a Toffoli gate and a CNOT gate via one-way quantum computation and linear optics
,”
Acta Phys. Pol. A
127
,
1189
1190
(
2015
).
9.
T.
Liu
,
J.
Xu
,
Y.
Zhang
,
Y.
Yu
,
Q.-P.
Su
,
Y.-H.
Zhou
, and
C.-P.
Yang
, “
Efficient scheme for implementing a hybrid Toffoli gate with two NV ensembles simultaneously controlling a single superconducting qubit
,”
Appl. Phys. Lett.
123
,
134002
(
2023
).
10.
Q.-P.
Su
,
L.
Bin
,
Y.
Zhang
, and
C.-P.
Yang
, “
Simple realization of a hybrid controlled–controlled-z gate with photonic control qubits encoded via eigenstates of the photon-number parity operator
,”
Appl. Phys. Lett.
122
,
114001
(
2023
).
11.
C.-P.
Yang
,
S.-I.
Chu
, and
S.
Han
, “
Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED
,”
Phys. Rev. A
67
,
042311
(
2003
).
12.
J.-Q.
You
and
F.
Nori
, “
Atomic physics and quantum optics using superconducting circuits
,”
Nature
474
,
589
597
(
2011
).
13.
X.
Gu
,
A. F.
Kockum
,
A.
Miranowicz
,
Y.-x.
Liu
, and
F.
Nori
, “
Microwave photonics with superconducting quantum circuits
,”
Phys. Rep.
718-719
,
1
102
(
2017
).
14.
C.
Wang
,
X.
Li
,
H.
Xu
,
Z.
Li
,
J.
Wang
,
Z.
Yang
, and
H.
Yu
, “
Towards practical quantum computers: Transmon qubit with a lifetime approaching 0.5 milliseconds
,”
npj Quantum Inf.
8
,
3
(
2022
).
15.
A. P.
Place
,
L. V.
Rodgers
,
P.
Mundada
,
B. M.
Smitham
, and
M.
Fitzpatrick
, “
New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds
,”
Nat. Commun.
12
,
1779
(
2021
).
16.
C.
Rigetti
,
J. M.
Gambetta
,
S.
Poletto
,
B. L.
Plourde
,
J. M.
Chow
,
A. D.
Córcoles
, and
J. A.
Smolin
, “
Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms
,”
Phys. Rev. B
86
,
100506
(
2012
).
17.
M. J.
Peterer
,
S. J.
Bader
,
X.
Jin
,
F.
Yan
,
A.
Kamal
,
T. J.
Gudmundsen
,
P. J.
Leek
,
T. P.
Orlando
,
W. D.
Oliver
, and
S.
Gustavsson
, “
Coherence and decay of higher energy levels of a superconducting transmon qubit
,”
Phys. Rev. Lett.
114
,
010501
(
2015
).
18.
W.
Woods
,
G.
Calusine
,
A.
Melville
,
A.
Sevi
,
E.
Golden
,
D. K.
Kim
,
D.
Rosenberg
,
J. L.
Yoder
, and
W. D.
Oliver
, “
Determining interface dielectric losses in superconducting coplanar-waveguide resonators
,”
Phys. Rev. Appl.
12
,
014012
(
2019
).
19.
A.
Melville
,
G.
Calusine
,
W.
Woods
,
K.
Serniak
,
E.
Golden
,
B. M.
Niedzielski
, and
D. K.
Kim
, “
Comparison of dielectric loss in titanium nitride and aluminum superconducting resonators
,”
Appl. Phys. Lett.
117
,
124004
(
2020
).
20.
M.
Kudra
,
J.
Biznárová
,
A.
Fadavi Roudsari
,
J.
Burnett
,
D.
Niepce
,
S.
Gasparinetti
,
B.
Wickman
, and
P.
Delsing
, “
High quality three-dimensional aluminum microwave cavities
,”
Appl. Phys. Lett.
117
,
070601
(
2020
).
21.
A.
Romanenko
,
R.
Pilipenko
,
S.
Zorzetti
,
D.
Frolov
,
M.
Awida
,
S.
Belomestnykh
,
S.
Posen
, and
A.
Grassellino
, “
Three-dimensional superconducting resonators at t < 20 mk with photon lifetimes up to τ= 2 s
,”
Phys. Rev. Appl.
13
,
034032
(
2020
).
22.
D.
Kim
and
K.
Moon
, “
Hybrid two-qubit gate using a circuit QED system with a triple-leg stripline resonator
,”
Phys. Rev. A
98
,
042307
(
2018
).
23.
C.-P.
Yang
,
Z.-F.
Zheng
, and
Y.
Zhang
, “
Universal quantum gate with hybrid qubits in circuit quantum electrodynamics
,”
Opt. Lett.
43
,
5765
5768
(
2018
).
24.
Q.-P.
Su
,
Y.
Zhang
, and
C.-P.
Yang
, “
Single-step implementation of a hybrid controlled-not gate with one superconducting qubit simultaneously controlling multiple target cat-state qubits
,”
Phys. Rev. A
105
,
062436
(
2022
).
25.
Q.-P.
Su
,
Y.
Zhang
,
L.
Bin
, and
C.-P.
Yang
, “
Hybrid controlled-sum gate with one superconducting qutrit and one cat-state qutrit and application in hybrid entangled state preparation
,”
Phys. Rev. A
105
,
042434
(
2022
).
26.
Y.
Zhang
,
C.
Yang
,
Q.
Su
,
Y.
Kang
,
W.
Zheng
,
S.
Li
, and
Y.
Yu
, “
Quantum voting machine encoded with microwave photons
,”
Chin. Phys. Lett.
41
,
070302
(
2024
).
27.
S.-B.
Zheng
and
G.-C.
Guo
, “
Efficient scheme for two-atom entanglement and quantum information processing in cavity QED
,”
Phys. Rev. Lett.
85
,
2392
(
2000
).
28.
A.
Sørensen
and
K.
Mølmer
, “
Quantum computation with ions in thermal motion
,”
Phys. Rev. Lett.
82
,
1971
(
1999
).
29.
D.
James
and
J.
Jerke
, “
Effective Hamiltonian theory and its applications in quantum information
,”
Can. J. Phys.
85
,
625
632
(
2007
).
30.
R. T.
Thew
,
K.
Nemoto
,
A. G.
White
, and
W. J.
Munro
, “
Qudit quantum-state tomography
,”
Phys. Rev. A
66
,
012303
(
2002
).
31.
R.
Bianchetti
,
S.
Filipp
,
M.
Baur
,
J. M.
Fink
,
C.
Lang
,
L.
Steffen
,
M.
Boissonneault
,
A.
Blais
, and
A.
Wallraff
, “
Control and tomography of a three level superconducting artificial atom
,”
Phys. Rev. Lett.
105
,
223601
(
2010
).
32.
P.
Rosario
,
A. C.
Santos
,
C. J.
Villas-Boas
, and
R.
Bachelard
, “
Collateral coupling between superconducting resonators: Fast high-fidelity generation of qudit-qudit entanglement
,”
Phys. Rev. Appl.
20
,
034036
(
2023
).
33.
J. R.
Johansson
,
P. D.
Nation
, and
F.
Nori
, “
Qutip: An open-source python framework for the dynamics of open quantum systems
,”
Comput. Phys. Commun.
183
,
1760
1772
(
2012
).
34.
I.-C.
Hoi
,
C.
Wilson
,
G.
Johansson
,
T.
Palomaki
,
B.
Peropadre
, and
P.
Delsing
, “
Demonstration of a single-photon router in the microwave regime
,”
Phys. Rev. Lett.
107
,
073601
(
2011
).
35.
J.
Koch
,
M. Y.
Terri
,
J.
Gambetta
,
A. A.
Houck
,
D. I.
Schuster
,
J.
Majer
,
A.
Blais
,
M. H.
Devoret
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Charge-insensitive qubit design derived from the cooper pair box
,”
Phys. Rev. A
76
,
042319
(
2007
).
36.
M.
Baur
,
A.
Fedorov
,
L.
Steffen
,
S.
Filipp
,
M.
Da Silva
, and
A.
Wallraff
, “
Benchmarking a quantum teleportation protocol in superconducting circuits using tomography and an entanglement witness
,”
Phys. Rev. Lett.
108
,
040502
(
2012
).
You do not currently have access to this content.