Using an impurity atom in crystal silicon as a spin-1/2 qubit has been made experimentally possible recently where the impurity atom acts as a quantum dot (QD). Quantum transport in and out of such a donor QD occurs in the sequential tunneling regime where a physical quantity of importance is the charging (addition) energy, which measures the energy necessary for adding an electron into the donor QD. In this work, we present a first-principles method to quantitatively predict the addition energy of the donor QD. Using density functional theory (DFT), we determine the impurity states that serve as the basis set for subsequent exact diagonalization calculation of the many-body states and energies of the donor QD. Due to the large effective Bohr radius of the conduction electrons in Si, very large supercells containing more than 10 000 atoms must be used to obtain accurate results. For the donor QD of a phosphorus impurity in bulk Si, the combined DFT and exact diagonalization predicts the first addition energy to be 53 meV, in good agreement with the corresponding experimental value. For the donor QD of an arsenic impurity in Si, the first addition energy is predicted to be 44.2 meV. The calculated many-body wave functions provide a vivid electronic picture of the donor QD.

1.
F. A.
Zwanenburg
,
A. S.
Dzurak
,
A.
Morello
,
M. Y.
Simmons
,
L. C.
Hollenberg
,
G.
Klimeck
,
S.
Rogge
,
S. N.
Coppersmith
, and
M. A.
Eriksson
, “
Silicon quantum electronics
,”
Rev. Mod. Phys.
85
,
961
1019
(
2013
).
2.
A.
Steane
, “
Quantum computing
,”
Rep. Prog. Phys.
61
,
117
173
(
1998
).
3.
H. J.
Kimble
, “
The quantum internet
,”
Nature
453
,
1023
1030
(
2008
).
4.
D.
Li
,
B. T.
Gard
,
Y.
Gao
,
C.-H.
Yuan
,
W.
Zhang
,
H.
Lee
, and
J. P.
Dowling
, “
Phase sensitivity at the Heisenberg limit in an Su(1,1) interferometer via parity detection
,”
Phys. Rev. A
94
,
063840
(
2016
).
5.
L. P.
Kouwenhoven
,
N. C.
van der Vaart
,
A. T.
Johnson
,
W.
Kool
,
C. J.
Harmans
,
J. G.
Williamson
,
A. A.
Staring
, and
C. T.
Foxon
, “
Single electron charging effects in semiconductor quantum dots
,”
Z. Phys. B
85
,
367
373
(
1991
).
6.
S. J.
Angus
,
A. J.
Ferguson
,
A. S.
Dzurak
, and
R. G.
Clark
, “
Gate-defined quantum dots in intrinsic silicon
,”
Nano Lett.
7
,
2051
2055
(
2007
).
7.
B. E.
Kane
, “
A silicon-based nuclear spin quantum computer
,”
Nature
393
,
133
137
(
1998
).
8.
C. D.
Hill
,
E.
Peretz
,
S. J.
Hile
,
M. G.
House
,
M.
Fuechsle
,
S.
Rogge
,
M. Y.
Simmons
, and
L. C.
Hollenberg
, “
A surface code quantum computer in silicon
,”
Sci. Adv.
1
,
e1500707
(
2015
).
9.
G.
Tosi
,
F. A.
Mohiyaddin
,
V.
Schmitt
,
S.
Tenberg
,
R.
Rahman
,
G.
Klimeck
, and
A.
Morello
, “
Silicon quantum processor with robust long-distance qubit couplings
,”
Nat. Commun.
8
,
450
(
2017
).
10.
M.
Fuechsle
,
J. A.
Miwa
,
S.
Mahapatra
,
H.
Ryu
,
S.
Lee
,
O.
Warschkow
,
L. C.
Hollenberg
,
G.
Klimeck
, and
M. Y.
Simmons
, “
A single-atom transistor
,”
Nat. Nanotechnol.
7
,
242
246
(
2012
).
11.
Y.
He
,
S. K.
Gorman
,
D.
Keith
,
L.
Kranz
,
J. G.
Keizer
, and
M. Y.
Simmons
, “
A two-qubit gate between phosphorus donor electrons in silicon
,”
Nature
571
,
371
375
(
2019
).
12.
H. G.
Stemp
,
S.
Asaad
,
M. R.
van Blankenstein
,
A.
Vaartjes
,
M. A. I.
Johnson
,
M. T.
Mądzik
,
A. J. A.
Heskes
,
H. R.
Firgau
,
R. Y.
Su
,
C. H.
Yang
,
A.
Laucht
,
C. I.
Ostrove
,
K. M.
Rudinger
,
K.
Young
,
R.
Blume-Kohout
,
F. E.
Hudson
,
A. S.
Dzurak
,
K. M.
Itoh
,
A. M.
Jakob
,
B. C.
Johnson
,
D. N.
Jamieson
, and
A.
Morello
, “
Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits
,” arXiv:2309.15463 [quant-ph] (
2024
).
13.
T. J.
Stock
,
O.
Warschkow
,
P. C.
Constantinou
,
J.
Li
,
S.
Fearn
,
E.
Crane
,
E. V.
Hofmann
,
A.
Kölker
,
D. R.
McKenzie
,
S. R.
Schofield
et al, “
Atomic-scale patterning of arsenic in silicon by scanning tunneling microscopy
,”
ACS Nano
14
,
3316
3327
(
2020
).
14.
V.
Ivanov
,
A.
Ivanov
,
J.
Simoni
,
P.
Parajuli
,
B.
Kanté
,
T.
Schenkel
, and
L.
Tan
, “
Database of semiconductor point-defect properties for applications in quantum technologies
,” arXiv:2303.16283 [quant-ph] (
2023
).
15.
W.
Kohn
and
J. M.
Luttinger
, “
Theory of donor states in silicon
,”
Phys. Rev.
98
,
915
922
(
1955
).
16.
M.
Stopa
, “
Quantum dot self-consistent electronic structure and the coulomb blockade
,”
Phys. Rev. B
54
,
13767
13783
(
1996
).
17.
X.
Gao
,
E.
Nielsen
,
R. P.
Muller
,
R. W.
Young
,
A. G.
Salinger
,
N. C.
Bishop
,
M. P.
Lilly
, and
M. S.
Carroll
, “
Quantum computer aided design simulation and optimization of semiconductor quantum dots
,”
J. Appl. Phys.
114
,
164302
(
2013
).
18.
F.
Beaudoin
,
P.
Philippopoulos
,
C.
Zhou
,
I.
Kriekouki
,
M.
Pioro-Ladrière
,
H.
Guo
, and
P.
Galy
, “
Robust technology computer-aided design of gated quantum dots at cryogenic temperature
,”
Appl. Phys. Lett.
120
,
264001
(
2022
).
19.
A. K.
Ramdas
and
S.
Rodriguez
, “
Spectroscopy of the solid-state analogues of the hydrogen atom: Donors and acceptors in semiconductors
,”
Rep. Prog. Phys.
44
,
1297
1387
(
1981
).
20.
S-i
Narita
,
T.
Shinbashi
, and
M.
Kobayashi
, “
Uniaxial stress and magnetic field effects on far-infrared photoconductivity of D- centers in P, As and Li doped Si crystals
,”
J. Phys. Soc. Jpn.
51
,
2186
2193
(
1982
).
21.
B.
Weber
,
Y. H.
Tan
,
S.
Mahapatra
,
T. F.
Watson
,
H.
Ryu
,
R.
Rahman
,
L. C.
Hollenberg
,
G.
Klimeck
, and
M. Y.
Simmons
, “
Spin blockade and exchange in coulomb-confined silicon double quantum dots
,”
Nat. Nanotechnol.
9
,
430
435
(
2014
).
22.
J. S.
Smith
,
A.
Budi
,
M. C.
Per
,
N.
Vogt
,
D. W.
Drumm
,
L. C.
Hollenberg
,
J. H.
Cole
, and
S. P.
Russo
, “
Ab initio calculation of energy levels for phosphorus donors in silicon
,”
Sci. Rep.
7
,
6010
(
2017
).
23.
T.
Yamamoto
,
T.
Uda
,
T.
Yamasaki
, and
T.
Ohno
, “
First-principles supercell calculations for simulating a shallow donor state in Si
,”
Phys. Lett. A
373
,
3989
3993
(
2009
).
24.
V.
Michaud-Rioux
,
L.
Zhang
, and
H.
Guo
, “
RESCU: A real space electronic structure method
,”
J. Comput. Phys.
307
,
593
613
(
2016
).
25.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
26.
N.
Troullier
and
J. L.
Martins
, “
A straightforward method for generating soft transferable pseudopotentials
,”
Solid State Commun.
74
,
613
616
(
1990
).
27.
Nanoacademic Technologies Inc.
,
QTCAD: A Computer-Aided Design Tool for Quantum-Technology Hardware
(
Nanoacademic Technologies Inc
.,
2022
).
28.
C.
Geuzaine
and
J.
Remacle
, “
Gmsh: A 3-D finite element mesh generator with built–in pre- and post-processing facilities
,”
Numer. Methods Eng.
79
,
1309
1331
(
2009
).
29.
L.
Greenman
,
H. D.
Whitley
, and
K. B.
Whaley
, “
Large-scale atomistic density functional theory calculations of phosphorus-doped silicon quantum bits
,”
Phys. Rev. B
88
,
165102
(
2013
).
30.
G.
Sethi
,
M.
Cuma
, and
F.
Liu
, “
Excitonic condensate in flat valence and conduction bands of opposite chirality
,”
Phys. Rev. Lett.
130
,
186401
(
2023
).
You do not currently have access to this content.