We report the nonvolatile modulation of microwave conductivity in ferroelectric PbZr0.2Ti0.8O3-gated ultrathin LaNiO3/La0.67Sr0.33MnO3 correlated oxide channel visualized by microwave impedance microscopy. Polarization switching is obtained by applying a tip bias above the coercive voltage of the ferroelectric layer. The microwave conductivity of the correlated channel underneath the up- and down-polarized domains has been quantified by finite-element analysis of the tip-sample admittance. At room temperature, a resistance on/off ratio above 100 between the two polarization states is sustained at frequencies up to 1 GHz, which starts to drop at higher frequencies. The frequence-dependence suggests that the conductance modulation originates from ferroelectric field-effect control of carrier density. The modulation is nonvolatile, remaining stable after 6 months of domain writing. Our work is significant for potential applications of oxide-based ferroelectric field-effect transistors in high-frequency nanoelectronics and spintronics.

1.
C. H.
Ahn
,
A.
Bhattacharya
,
M.
Di Ventra
et al, “
Electrostatic modification of novel materials
,”
Rev. Mod. Phys.
78
,
1185
(
2006
).
2.
C.
Ko
,
Y.
Lee
,
Y.
Chen
et al, “
Ferroelectrically gated atomically thin transition-metal dichalcogenides as nonvolatile memory
,”
Adv. Mater.
28
,
2923
2930
(
2016
).
3.
A.
Lipatov
,
A.
Fursina
,
T. H.
Vo
et al, “
Polarization-dependent electronic transport in graphene/Pb(Zr, Ti)O3 ferroelectric field-effect transistors
,”
Adv. Elec. Mater.
3
,
1700020
(
2017
).
4.
X.
Hong
,
A.
Posadas
,
A.
Lin
et al, “
Ferroelectric-field induced tuning of magnetism in the colossal magnetoresistive oxide La1−xSrxMnO3
,”
Phys. Rev. B
68
,
134415
(
2003
).
5.
A.
Rajapitamahuni
,
L. L.
Tao
,
Y.
Hao
et al, “
Ferroelectric polarization control of magnetic anisotropy in PbZr0.2Ti0.8O3/La0.8Sr0.2MnO3 heterostructures
,”
Phys. Rev. Mater.
3
,
021401
(
2019
).
6.
L.
Wang
,
Q.
Feng
,
Y.
Kim
et al, “
Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures
,”
Nat. Mater.
17
,
1087
(
2018
).
7.
C. H.
Ahn
,
S.
Gariglio
,
P.
Paruch
et al, “
Electrostatic modulation of superconductivity in ultrathin GdBa2Cu3O7-x films
,”
Science
284
,
1152
(
1999
).
8.
C. H.
Ahn
,
J. M.
Triscone
, and
J.
Mannhart
, “
Electric field effect in correlated oxide systems
,”
Nature
424
,
1015
(
2003
).
9.
X.
Chen
,
X.
Zhang
,
M. A.
Koten
et al, “
Interfacial charge engineering in ferroelectric controlled Mott transistors
,”
Adv. Mater.
29
,
1701385
(
2017
).
10.
H.
Yamada
,
M.
Marinova
,
P.
Altuntas
et al, “
Ferroelectric control of a Mott insulator
,”
Sci. Rep.
3
,
2834
(
2013
).
11.
X.
Hong
, “
Emerging ferroelectric transistors with nanoscale channel materials: The possibilities, the limitations
,”
J. Phys. Condens. Matter
28
,
103003
(
2016
).
12.
Y.
Watanabe
, “
Epitaxial all-perovskite ferroelectric field-effect transistor with a memory retention
,”
Appl. Phys. Lett.
66
,
1770
(
1995
).
13.
J.
Hoffman
,
X.
Hong
, and
C. H.
Ahn
, “
Device performance of ferroelectric/correlated oxide heterostructures for non-volatile memory applications
,”
Nanotechnology
22
,
254014
(
2011
).
14.
C. A. F.
Vaz
,
Y. J.
Shin
,
M.
Bibes
et al, “
Epitaxial ferroelectric interfacial devices
,”
Appl. Phys. Rev.
8
,
041308
(
2021
).
15.
Y.
Hao
,
X.
Chen
,
L.
Zhang
et al, “
Record high room temperature resistance switching in ferroelectric-gated Mott transistors unlocked by interfacial charge engineering
,”
Nat. Commun.
14
,
8247
(
2023
).
16.
A.
Malashevich
,
M. S. J.
Marshall
,
C.
Visani
et al, “
Controlling mobility in perovskite oxides by ferroelectric modulation of atomic-scale interface structure
,”
Nano Lett.
18
,
573
578
(
2018
).
17.
J. Y.
Kim
,
M.
Choi
,
H. W.
Jang
et al, “
Ferroelectric field effect transistors: Progress and perspective
,”
APL Mater.
9
,
021102
(
2021
).
18.
J. A.
Kilner
and
R. J.
Brook
, “
A study of oxygen ion conductivity in doped non-stoichiometric oxides
,”
Solid State Ionics
6
,
237
(
1982
).
19.
K.
Lai
,
W.
Kundhikanjana
, and
Z. X.
Shen
, “
Nanoscale microwave microscopy using shielded cantilever probes
,”
Appl. Nanosci.
1
,
13
(
2011
).
20.
Z.
Chu
,
L.
Zheng
, and
K.
Lai
, “
Microwave microscopy and its applications
,”
Annu. Rev. Mater. Res.
50
,
105
(
2020
).
21.
R.
Scherwitzl
,
S.
Gariglio
,
M.
Gabay
et al, “
Metal-insulator transition in ultrathin LaNiO3 films
,”
Phys. Rev. Lett.
106
,
246403
(
2011
).
22.
J.
Fowlie
,
M.
Gibert
,
G.
Tieri
et al, “
Conductivity and local structure of LaNiO3 thin films
,”
Adv. Mater.
29
,
1605197
(
2017
).
23.
M.
Golalikhani
,
Q.
Lei
,
R. U.
Chandrasena
et al, “
Nature of the metal-insulator transition in few unit-cell-thick LaNiO3 films
,”
Nat. Commun.
9
,
2206
(
2018
).
24.
S.
Catalano
,
M.
Gibert
,
J.
Fowlie
et al, “
Rare-earth nickelates RNiO3: Thin films and heterostructures
,”
Rep. Prog. Phys.
81
,
046501
(
2018
).
25.
R. P.
Borges
,
W.
Guichard
,
J. G.
Lunney
et al, “
Magnetic and electric “dead” layers in (La0.7Sr0.3)MnO3 thin films
,”
J. Appl. Phys.
89
,
3868
3873
(
2001
).
26.
J.
Hoffman
,
I. C.
Tung
,
B. B.
Nelson-Cheeseman
et al, “
Charge transfer and interfacial magnetism in (LaNiO3)n/(LaMnO3)2 superlattices
,”
Phys. Rev. B
88
,
144411
(
2013
).
27.
M.
Kitamura
,
K.
Horiba
,
M.
Kobayashi
et al, “
Spatial distribution of transferred charges across the heterointerface between perovskite transition metal oxides LaNiO3 and LaMnO3
,”
Appl. Phys. Lett.
108
,
111603
(
2016
).
28.
H.
Chen
and
A.
Millis
, “
Charge transfer driven emergent phenomena in oxide heterostructures
,”
J. Phys. Condens. Matter
29
,
243001
(
2017
).
29.
K.
Lai
,
M. B.
Ji
,
N.
Leindecker
et al, “
Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes
,”
Rev. Sci. Instrum.
78
,
063702
(
2007
).
30.
K.
Lai
,
W.
Kundhikanjana
,
M.
Kelly
et al, “
Modeling and characterization of a cantilever-based near-field scanning microwave impedance microscope
,”
Rev. Sci. Instrum.
79
,
063703
(
2008
).
31.
A. K.
Jonscher
, “
The ‘universal’ dielectric response
,”
Nature
267
,
673
679
(
1977
).
32.
Z.
Yang
,
C.
Ko
, and
S.
Ramanathan
et al, “
Oxide electronics utilizing ultrafast metal-insulator transitions
,”
Annu. Rev. Mater. Res.
41
,
337
367
(
2011
).
You do not currently have access to this content.