We report on metalorganic chemical vapor deposition (MOCVD) growth of controllably Si-doped 4.5 μm thick β-Ga2O3 films with electron concentrations in the 1015 cm−3 range and record-high room temperature Hall electron mobilities of up to 200 cm2/Vs, reaching the predicted theoretical maximum room temperature phonon scattering-limited mobility value for β-Ga2O3. Growth of the homoepitaxial films was performed on Fe-doped (010) β-Ga2O3 substrates at a growth rate of 1.9 μm/h using TEGa as the Gallium precursor. To probe the background electron concentration, an unintentionally doped film was grown with a Hall concentration of 3.43 × 1015 cm−3 and Hall mobility of 196 cm2/Vs. Growth of intentionally Si-doped films was accomplished by fixing all growth conditions and varying only the silane flow, with controllable Hall electron concentrations ranging from 4.38 × 1015 to 8.30 × 1015 cm−3 and exceptional Hall mobilities ranging from 194 to 200 cm2/Vs demonstrated. C-V measurements showed a flat charge profile with the ND+–NA values correlating well with the Hall-measured electron concentration in the films. SIMS measurements showed the silicon atomic concentration matched the Hall electron concentration with carbon and hydrogen below detection limit in the films. The Hall, C-V, and SIMS data indicate the growth of high-quality 4.5 μm thick β-Ga2O3 films and controllable doping into the mid 1015 cm−3 range. These results demonstrate MOCVD growth of electronics grade record-high mobility, low carrier density, and thick β-Ga2O3 drift layers for next-generation vertical β-Ga2O3 power devices.

1.
T.
Ahmad
and
D.
Zhang
, “
A critical review of comparative global historical energy consumption and future demand: The story told so far
,”
Energy Rep.
6
,
1973
1991
(
2020
).
2.
U. K.
Mishra
, “
What will win the wide-bandgap wars?
,”
IEEE Spectr.
60
(
4
),
32
39
(
2023
).
3.
M.
Buffolo
,
D.
Favero
,
A.
Marcuzzi
,
C.
De Santi
,
G.
Meneghesso
,
E.
Zanoni
, and
M.
Meneghini
, “
Review and outlook on GaN and SiC power devices: Industrial state-of-the-art, applications, and perspectives
,”
IEEE Trans. Electron Devices
71
(
3
),
1344
1355
(
2024
).
4.
A. J.
Green
,
J.
Speck
,
G.
Xing
,
P.
Moens
,
F.
Allerstam
,
K.
Gumaelius
,
T.
Neyer
,
A.
Arias-Purdue
,
V.
Mehrotra
,
A.
Kuramata
,
K.
Sasaki
,
S.
Watanabe
,
K.
Koshi
,
J.
Blevins
,
O.
Bierwagen
,
S.
Krishnamoorthy
,
K.
Leedy
,
A. R.
Arehart
,
A. T.
Neal
,
S.
Mou
,
S. A.
Ringel
,
A.
Kumar
,
A.
Sharma
,
K.
Ghosh
,
U.
Singisetti
,
W.
Li
,
K.
Chabak
,
K.
Liddy
,
A.
Islam
,
S.
Rajan
,
S.
Graham
,
S.
Choi
,
Z.
Cheng
, and
M.
Higashiwaki
, “
β-gallium oxide power electronics
,”
APL Mater.
10
(
2
),
029201
(
2022
).
5.
Y.
Zhang
and
J. S.
Speck
, “
Importance of shallow hydrogenic dopants and material purity of ultra-wide bandgap semiconductors for vertical power electron devices
,”
Semicond. Sci. Technol.
35
(
12
),
125018
(
2020
).
6.
J. D.
Blevins
,
K.
Stevens
,
A.
Lindsey
,
G.
Foundos
, and
L.
Sande
, “
Development of large diameter semi-insulating gallium oxide (Ga2O3) substrates
,”
IEEE Trans. Semicond. Manuf.
32
(
4
),
466
472
(
2019
).
7.
Z.
Galazka
,
K.
Irmscher
,
R.
Uecker
,
R.
Bertram
,
M.
Pietsch
,
A.
Kwasniewski
,
M.
Naumann
,
T.
Schulz
,
R.
Schewski
,
D.
Klimm
, and
M.
Bickermann
, “
On the bulk β-Ga2O3 single crystals grown by the Czochralski method
,”
J. Cryst. Growth
404
,
184
191
(
2014
).
8.
Z.
Galazka
, “
Growth of bulk β-Ga2O3 single crystals by the Czochralski method
,”
J. Appl. Phys.
131
(
3
),
031103
(
2022
).
9.
K.
Hoshikawa
,
E.
Ohba
,
T.
Kobayashi
,
J.
Yanagisawa
,
C.
Miyagawa
, and
Y.
Nakamura
, “
Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air
,”
J. Cryst. Growth
447
,
36
41
(
2016
).
10.
H.
Aida
,
K.
Nishiguchi
,
H.
Takeda
,
N.
Aota
,
K.
Sunakawa
, and
Y.
Yaguchi
, “
Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method
,”
Jpn. J. Appl. Phys., Part 1
47
(
11R
),
8506
(
2008
).
11.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
, “
High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth
,”
Jpn. J. Appl. Phys., Part 1
55
(
12
),
1202A2
(
2016
).
12.
A.
Yoshikawa
,
V.
Kochurikhin
,
T.
Tomida
,
I.
Takahashi
,
K.
Kamada
,
Y.
Shoji
, and
K.
Kakimoto
, “
Growth of bulk β-Ga2O3 crystals from melt without precious-metal crucible by pulling from a cold container
,”
Sci. Rep.
14
(
1
),
14881
(
2024
).
13.
A.
Bhattacharyya
,
C.
Peterson
,
K.
Chanchaiworawit
,
S.
Roy
,
Y.
Liu
,
S.
Rebollo
, and
S.
Krishnamoorthy
, “
Over 6 μm thick MOCVD-grown low-background carrier density (1015 cm−3) high-mobility (010) β-Ga2O3 drift layers
,”
Appl. Phys. Lett.
124
(
1
),
010601
(
2024
).
14.
T.-S.
Chou
,
P.
Seyidov
,
S.
Bin Anooz
,
R.
Grüneberg
,
J.
Rehm
,
T. T. V.
Tran
,
A.
Fiedler
,
K.
Tetzner
,
Z.
Galazka
,
M.
Albrecht
, and
A.
Popp
, “
High-mobility 4 μm MOVPE-grown (100) β-Ga2O3 film by parasitic particles suppression
,”
Jpn. J. Appl. Phys., Part 1
62
(
SF
),
SF1004
(
2023
).
15.
F.
Alema
,
Y.
Zhang
,
A.
Mauze
,
T.
Itoh
,
J. S.
Speck
,
B.
Hertog
, and
A.
Osinsky
, “
H2O vapor assisted growth of β-Ga2O3 by MOCVD
,”
AIP Adv.
10
(
8
),
085002
(
2020
).
16.
F.
Alema
,
B.
Hertog
,
A.
Osinsky
,
P.
Mukhopadhyay
,
M.
Toporkov
, and
W. V.
Schoenfeld
, “
Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD
,”
J. Cryst. Growth
475
,
77
82
(
2017
).
17.
S.
Saha
,
L.
Meng
,
D. S.
Yu
,
A. F. M.
Anhar Uddin Bhuiyan
,
H.
Zhao
, and
U.
Singisetti
, “
High growth rate metal organic chemical vapor deposition grown Ga2O3 (010) Schottky diodes
,”
J. Vac. Sci. Technol. A
42
(
4
),
042705
(
2024
).
18.
L.
Meng
,
Z.
Feng
,
A.
Bhuiyan
, and
H.
Zhao
, “
High-mobility MOCVD β-Ga2O3 epitaxy with fast growth rate using trimethylgallium
,”
Cryst. Growth Des.
22
(
6
),
3896
3904
(
2022
).
19.
G.
Seryogin
,
F.
Alema
,
N.
Valente
,
H.
Fu
,
E.
Steinbrunner
,
A. T.
Neal
,
S.
Mou
,
A.
Fine
, and
A.
Osinsky
, “
MOCVD growth of high purity Ga2O3 epitaxial films using trimethylgallium precursor
,”
Appl. Phys. Lett.
117
(
26
),
262101
(
2020
).
20.
H.-H.
Wan
,
J.-S.
Li
,
C.-C.
Chiang
,
F.
Ren
,
T. J.
Yoo
,
H.
Kim
,
A.
Osinsky
,
F.
Alema
, and
S. J.
Pearton
, “
Vertical NiO/β-Ga2O3 rectifiers grown by metalorganic chemical vapor deposition
,”
J. Vac. Sci. Technol. A
41
(
5
),
052707
(
2023
).
21.
J.
Yoshinaga
,
H.
Tozato
,
T.
Okuyama
,
S.
Sasaki
,
G.
Piao
,
K.
Ikenaga
,
K.
Goto
,
Y.
Ban
, and
Y.
Kumagai
, “
High-speed growth of thick high-purity β-Ga2O3 layers by low-pressure hot-wall metalorganic vapor phase epitaxy
,”
Appl. Phys. Express
16
(
9
),
095504
(
2023
).
22.
J. J.
Morihara
,
J.
Inajima
,
Z.
Wang
,
J.
Yoshinaga
,
S.
Sato
,
K.
Eguchi
,
T.
Tsutsumi
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
Electrical properties of unintentionally doped β-Ga2O3 (010) thin films grown by low-pressure hot-wall metalorganic chemical vapor deposition
,”
Jpn. J. Appl. Phys., Part 1
63
,
080901
(
2024
).
23.
A.
Bhattacharyya
,
C.
Peterson
,
T.
Itoh
,
S.
Roy
,
J.
Cooke
,
S.
Rebollo
,
P.
Ranga
,
B.
Sensale-Rodriguez
, and
S.
Krishnamoorthy
, “
Enhancing the electron mobility in Si-doped (010) β-Ga2O3 films with low-temperature buffer layers
,”
APL Mater.
11
(
2
),
021110
(
2023
).
24.
A.
Bhattacharyya
,
P.
Ranga
,
S.
Roy
,
J.
Ogle
,
L.
Whittaker-Brooks
, and
S.
Krishnamoorthy
, “
Low temperature homoepitaxy of (010) β-Ga2O3 by metalorganic vapor phase epitaxy: Expanding the growth window
,”
Appl. Phys. Lett.
117
(
14
),
142102
(
2020
).
25.
Y.
Zhang
,
F.
Alema
,
A.
Mauze
,
O. S.
Koksaldi
,
R.
Miller
,
A.
Osinsky
, and
J. S.
Speck
, “
MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature
,”
APL Mater.
7
(
2
),
022506
(
2019
).
26.
Z.
Feng
,
A.
Bhuiyan
,
Z.
Xia
,
W.
Moore
,
Z.
Chen
,
J. F.
McGlone
,
D. R.
Daughton
,
A. R.
Arehart
,
S. A.
Ringel
,
S.
Rajan
, and
H.
Zhao
, “
Probing charge transport and background doping in metal-organic chemical vapor deposition-grown (010) β-Ga2O3
,”
Phys. Status Solidi RRL
14
(
8
),
2000145
(
2020
).
27.
Z.
Feng
,
A. F. M.
Anhar Uddin Bhuiyan
,
M. R.
Karim
, and
H.
Zhao
, “
MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties
,”
Appl. Phys. Lett.
114
(
25
),
250601
(
2019
).
28.
A. F. M.
Anhar Uddin Bhuiyan
,
Z.
Feng
,
J. M.
Johnson
,
Z.
Chen
,
H.-L.
Huang
,
J.
Hwang
, and
H.
Zhao
, “
MOCVD epitaxy of β-(AlxGa1−x)2O3 thin films on (010) Ga2O3 substrates and N-type doping
,”
Appl. Phys. Lett.
115
(
12
),
120602
(
2019
).
29.
P.
Ranga
,
A.
Bhattacharyya
,
A.
Chmielewski
,
S.
Roy
,
R.
Sun
,
M. A.
Scarpulla
,
N.
Alem
, and
S.
Krishnamoorthy
, “
Growth and characterization of metalorganic vapor-phase epitaxy-grown β-(AlxGa1-x)2O3/β-Ga2O3 heterostructure channels
,”
Appl. Phys. Express
14
(
2
),
025501
(
2021
).
30.
A.
Katta
,
F.
Alema
,
W.
Brand
,
A.
Gilankar
,
A.
Osinsky
, and
N. K.
Kalarickal
, “
Demonstration of MOCVD based in situ etching of β-Ga2O3 using TEGa
,”
J. Appl. Phys.
135
(
7
),
075705
(
2024
).
31.
S.
Roy
,
A. E.
Chmielewski
,
A.
Bhattacharyya
,
P.
Ranga
,
R.
Sun
,
M. A.
Scarpulla
,
N.
Alem
, and
S.
Krishnamoorthy
, “
In situ dielectric Al2O3/β-Ga2O3 interfaces grown using metal–organic chemical vapor deposition
,”
Adv. Elect. Mater.
7
(
11
),
2100333
(
2021
).
32.
A.
Bhuiyan
,
L.
Meng
,
H.-L.
Huang
,
J.
Hwang
, and
H.
Zhao
, “
In situ MOCVD growth and band offsets of Al2O3 dielectric on β-Ga2O3 and β-(AlxGa1−x)2O3 thin films
,”
J. Appl. Phys.
132
(
16
),
165301
(
2022
).
33.
F.
Alema
,
Y.
Zhang
,
A.
Osinsky
,
N.
Orishchin
,
N.
Valente
,
A.
Mauze
, and
J. S.
Speck
, “
Low 1014 cm−3 free carrier concentration in epitaxial β-Ga2O3 grown by MOCVD
,”
APL Mater.
8
(
2
),
021110
(
2020
).
34.
F.
Alema
,
C.
Peterson
,
A.
Bhattacharyya
,
S.
Roy
,
S.
Krishnamoorthy
, and
A.
Osinsky
, “
Low resistance ohmic contact on epitaxial MOVPE grown β-Ga2O3 and β-(AlxGa1-x)2O3 films
,”
IEEE Electron Device Lett.
43
(
10
),
1649
1652
(
2022
).
35.
P.
Ranga
,
A.
Bhattacharyya
,
A.
Rishinaramangalam
,
Y. K.
Ooi
,
M. A.
Scarpulla
,
D.
Feezell
, and
S.
Krishnamoorthy
, “
Delta-doped β-Ga2O3 thin films and β-(Al0.26Ga0.74)2O3/β-Ga2O3 heterostructures grown by metalorganic vapor-phase epitaxy
,”
Appl. Phys. Express
13
(
4
),
045501
(
2020
).
36.
P.
Ranga
,
A.
Bhattacharyya
,
A.
Chmielewski
,
S.
Roy
,
N.
Alem
, and
S.
Krishnamoorthy
, “
Delta-doped β-Ga2O3 films with narrow FWHM grown by metalorganic vapor-phase epitaxy
,”
Appl. Phys. Lett.
117
(
17
),
172105
(
2020
).
37.
K.
Tetzner
,
E.
Bahat Treidel
,
O.
Hilt
,
A.
Popp
,
S.
Bin Anooz
,
G.
Wagner
,
A.
Thies
,
K.
Ickert
,
H.
Gargouri
, and
J.
Würfl
, “
Lateral 1.8 kV β-Ga2O3 MOSFET with 155 MW/cm2 power figure of merit
,”
IEEE Electron Device Lett.
40
(
9
),
1503
1506
(
2019
).
38.
C. N.
Saha
,
A.
Vaidya
,
A.
Bhuiyan
,
L.
Meng
,
S.
Sharma
,
H.
Zhao
, and
U.
Singisetti
, “
Scaled β-Ga2O3 thin channel MOSFET with 5.4 MV/cm average breakdown field and near 50 GHz fMAX
,”
Appl. Phys. Lett.
122
,
182106
(
2023
).
39.
S.
Sharma
,
L.
Meng
,
A.
Bhuiyan
,
Z.
Feng
,
D.
Eason
,
H.
Zhao
, and
U.
Singisetti
, “
Vacuum annealed β-Ga2O3 recess channel MOSFETs with 8.56 kV breakdown voltage
,”
IEEE Electron Device Lett.
43
(
12
),
2029
2032
(
2022
).
40.
Y.
Lv
,
H.
Liu
,
X.
Zhou
,
Y.
Wang
,
X.
Song
,
Y.
Cai
,
Q.
Yan
,
C.
Wang
,
S.
Liang
,
J.
Zhang
,
Z.
Feng
,
H.
Zhou
,
S.
Cai
, and
Y.
Hao
, “
Lateral β-Ga2O3 MOSFETs with high power figure of merit of 277 MW/cm2
,”
IEEE Electron Device Lett.
41
(
4
),
537
540
(
2020
).
41.
A. J.
Green
,
K. D.
Chabak
,
E. R.
Heller
,
R. C.
Fitch
,
M.
Baldini
,
A.
Fiedler
,
K.
Irmscher
,
G.
Wagner
,
Z.
Galazka
,
S. E.
Tetlak
,
A.
Crespo
,
K.
Leedy
, and
G. H.
Jessen
, “
3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs
,”
IEEE Electron Device Lett.
37
(
7
),
902
905
(
2016
).
42.
A.
Bhattacharyya
,
S.
Roy
,
P.
Ranga
,
D.
Shoemaker
,
Y.
Song
,
J. S.
Lundh
,
S.
Choi
, and
S.
Krishnamoorthy
, “
130 mA mm−1 β-Ga2O3 metal semiconductor field effect transistor with low-temperature metalorganic vapor phase epitaxy-regrown ohmic contacts
,”
Appl. Phys. Express
14
(
7
),
076502
(
2021
).
43.
A.
Bhattacharyya
,
P.
Ranga
,
S.
Roy
,
C.
Peterson
,
F.
Alema
,
G.
Seryogin
,
A.
Osinsky
, and
S.
Krishnamoorthy
, “
Multi-kV class β-Ga2O3 MESFETs with a lateral figure of merit up to 355 MW/cm2
,”
IEEE Electron Device Lett.
42
(
9
),
1272
1275
(
2021
).
44.
A.
Bhattacharyya
,
S.
Sharma
,
F.
Alema
,
P.
Ranga
,
S.
Roy
,
C.
Peterson
,
G.
Seryogin
,
A.
Osinsky
,
U.
Singisetti
, and
S.
Krishnamoorthy
, “
4.4 kV β-Ga2O3 MESFETs with power figure of merit exceeding 100 MW cm−2
,”
Appl. Phys. Express
15
(
6
),
061001
(
2022
).
45.
A.
Bhattacharyya
,
S.
Roy
,
P.
Ranga
,
C.
Peterson
, and
S.
Krishnamoorthy
, “
High-mobility tri-gate β-Ga2O3 MESFETs with a power figure of merit over 0.9 GW/cm2
,”
IEEE Electron Device Lett.
43
(
10
),
1637
1640
(
2022
).
46.
C.
Peterson
,
F.
Alema
,
A.
Bhattacharyya
,
Z.
Ling
,
S.
Roy
,
A.
Osinsky
, and
S.
Krishnamoorthy
, “
Kilovolt-class β-Ga2O3 MOSFETs on 1-in. bulk substrates
,”
Appl. Phys. Lett.
124
(
8
),
082104
(
2024
).
47.
H.
Liu
,
Y.
Wang
,
Y.
Lv
,
S.
Han
,
T.
Han
,
S.
Dun
,
H.
Guo
,
A.
Bu
, and
Z.
Feng
, “
10-kV lateral β-Ga2O3 MESFETs with B ion implanted planar isolation
,”
IEEE Electron Device Lett.
44
(
7
),
1048
1051
(
2023
).
48.
J. P.
McCandless
,
C. A.
Gorsak
,
V.
Protasenko
,
D. G.
Schlom
,
M. O.
Thompson
,
H. G.
Xing
,
D.
Jena
, and
H. P.
Nair
, “
Accumulation and removal of Si impurities on β-Ga2O3 arising from ambient air exposure
,”
Appl. Phys. Lett.
124
(
11
),
111601
(
2024
).
49.
T.-S.
Chou
,
S.
Bin Anooz
,
R.
Grüneberg
,
N.
Dropka
,
J.
Rehm
,
T. T. V.
Tran
,
K.
Irmscher
,
P.
Seyidov
,
W.
Miller
,
Z.
Galazka
,
M.
Albrecht
, and
A.
Popp
, “
Si doping mechanism in MOVPE-grown (100) β-Ga2O3 films
,”
Appl. Phys. Lett.
121
(
3
),
032103
(
2022
).
50.
H.
Swenson
and
N. P.
Stadie
, “
Langmuir's theory of adsorption: A centennial review
,”
Langmuir
35
(
16
),
5409
5426
(
2019
).
51.
N.
Ma
,
N.
Tanen
,
A.
Verma
,
Z.
Guo
,
T.
Luo
,
H.
(Grace) Xing
, and
D.
Jena
, “
Intrinsic electron mobility limits in β-Ga2O3
,”
Appl. Phys. Lett.
109
(
21
),
212101
(
2016
).
52.
T.
Itoh
,
A.
Mauze
,
Y.
Zhang
, and
J. S.
Speck
, “
Continuous Si doping in (010) and (001) β-Ga2O3 films by plasma-assisted molecular beam epitaxy
,”
APL Mater.
11
(
4
),
041108
(
2023
).
53.
M.
Baldini
,
M.
Albrecht
,
A.
Fiedler
,
K.
Irmscher
,
R.
Schewski
, and
G.
Wagner
, “
Editors' Choice—Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates
,”
ECS J. Solid State Sci. Technol.
6
(
2
),
Q3040
Q3044
(
2017
).
54.
P.
Mazzolini
,
P.
Vogt
,
R.
Schewski
,
C.
Wouters
,
M.
Albrecht
, and
O.
Bierwagen
, “
Faceting and metal-exchange catalysis in (010) β-Ga2O3 thin films homoepitaxially grown by plasma-assisted molecular beam epitaxy
,”
APL Mater.
7
(
2
),
022511
(
2019
).
55.
T.-S.
Chou
,
P.
Seyidov
,
S.
Bin Anooz
,
R.
Grüneberg
,
M.
Pietsch
,
J.
Rehm
,
T. T. V.
Tran
,
K.
Tetzner
,
Z.
Galazka
,
M.
Albrecht
,
K.
Irmscher
,
A.
Fiedler
, and
A.
Popp
, “
Suppression of particle formation by gas-phase pre-reactions in (100) MOVPE-grown β-Ga2O3 films for vertical device application
,”
Appl. Phys. Lett.
122
(
5
),
052102
(
2023
).
56.
J.
Cooke
,
P.
Ranga
,
A.
Bhattacharyya
,
X.
Cheng
,
Y.
Wang
,
S.
Krishnamoorthy
,
M. A.
Scarpulla
, and
B.
Sensale-Rodriguez
, “
Sympetalous defects in metalorganic vapor phase epitaxy (MOVPE)-grown homoepitaxial β-Ga2O3 films
,”
J. Vac. Sci. Technol. A
41
(
1
),
013406
(
2023
).
57.
K.
Goto
,
K.
Ikenaga
,
N.
Tanaka
,
M.
Ishikawa
,
H.
Machida
, and
Y.
Kumagai
, “
Thermodynamic and experimental studies of β-Ga2O3 growth by metalorganic vapor phase epitaxy
,”
Jpn. J. Appl. Phys., Part 1
60
(
4
),
045505
(
2021
).
58.
A. T.
Neal
,
S.
Mou
,
S.
Rafique
,
H.
Zhao
,
E.
Ahmadi
,
J. S.
Speck
,
K. T.
Stevens
,
J. D.
Blevins
,
D. B.
Thomson
,
N.
Moser
,
K. D.
Chabak
, and
G. H.
Jessen
, “
Donors and deep acceptors in β-Ga2O3
,”
Appl. Phys. Lett.
113
(
6
),
062101
(
2018
).
59.
A.
Mauze
,
Y.
Zhang
,
T.
Mates
,
F.
Wu
, and
J. S.
Speck
, “
Investigation of unintentional Fe incorporation in (010) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy
,”
Appl. Phys. Lett.
115
(
5
),
052102
(
2019
).
60.
M.
Yoshida
,
H.
Watanabe
, and
F.
Uesugi
, “
Mass spectrometric study of Ga(CH3)3 and Ga(C2H5)3 decomposition reaction in H2 and N2
,”
J. Electrochem. Soc.
132
(
3
),
677
(
1985
).
61.
K.
Goto
,
K.
Konishi
,
H.
Murakami
,
Y.
Kumagai
,
B.
Monemar
,
M.
Higashiwaki
,
A.
Kuramata
, and
S.
Yamakoshi
, “
Halide vapor phase epitaxy of Si doped β-Ga2O3 and its electrical properties
,”
Thin Solid Films
666
,
182
184
(
2018
).
62.
J. H.
Leach
,
K.
Udwary
,
J.
Rumsey
,
G.
Dodson
,
H.
Splawn
, and
K. R.
Evans
, “
Halide vapor phase epitaxial growth of β-Ga2O3 and α-Ga2O3 films
,”
APL Mater.
7
(
2
),
022504
(
2019
).
63.
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
,
E. G.
Víllora
,
K.
Shimamura
, and
S.
Yamakoshi
, “
Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy
,”
Appl. Phys. Express
5
(
3
),
035502
(
2012
).
64.
E.
Ahmadi
,
O. S.
Koksaldi
,
S. W.
Kaun
,
Y.
Oshima
,
D. B.
Short
,
U. K.
Mishra
, and
J. S.
Speck
, “
Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy
,”
Appl. Phys. Express
10
(
4
),
041102
(
2017
).
65.
A.
Mauze
,
Y.
Zhang
,
T.
Itoh
,
E.
Ahmadi
, and
J. S.
Speck
, “
Sn doping of (010) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy
,”
Appl. Phys. Lett.
117
(
22
),
222102
(
2020
).
You do not currently have access to this content.