We present an effective method for transmitting electromagnetic waves as surface waves with a tape-based metasurface design. This design incorporates silver square patches periodically patterned on an adhesive tape substrate. Specifically, our study proposes a strategy to enhance the efficiency of power transfer in high-frequency bands by guiding signals as surface waves rather than free-space waves. Both the numerical and experimental results validate the markedly enhanced efficiency in power transfer of high-frequency signals compared to that achieved with conventional methods, such as wireless power transfer and microstrips. Importantly, our metasurface design can be readily manufactured and tailored for various environments. Thus, our study contributes to designing power-efficient next-generation communication systems such as 6G and 7G, which leverage high-frequency signals in the millimeter-wave and terahertz bands.

1.
S.
Walia
,
C. M.
Shah
,
P.
Gutruf
,
H.
Nili
,
D. R.
Chowdhury
,
W.
Withayachumnankul
,
M.
Bhaskaran
, and
S.
Sriram
,
Appl. Phys. Rev.
2
,
011303
(
2015
).
2.
S. B.
Glybovski
,
S. A.
Tretyakov
,
P. A.
Belov
,
Y. S.
Kivshar
, and
C. R.
Simovski
,
Phys. Rep.
634
,
1
(
2016
).
3.
C. L.
Holloway
,
E. F.
Kuester
,
J. A.
Gordon
,
J.
O'Hara
,
J.
Booth
, and
D. R.
Smith
,
IEEE Antennas Propag. Mag.
54
,
10
(
2012
).
4.
H.-T.
Chen
,
A. J.
Taylor
, and
N.
Yu
,
Rep. Prog. Phys.
79
,
076401
(
2016
).
5.
A.
Li
,
S.
Singh
, and
D.
Sievenpiper
,
Nanophotonics
7
,
989
(
2018
).
6.
W.
Zhu
,
F.
Xiao
,
M.
Kang
, and
M.
Premaratne
,
Appl. Phys. Lett.
108
,
121901
(
2016
).
7.
A. M.
Shaltout
,
V. M.
Shalaev
, and
M. L.
Brongersma
,
Science
364
,
eaat3100
(
2019
).
8.
Y.
Liu
and
X.
Zhang
,
Appl. Phys. Lett.
103
,
141101
(
2013
).
9.
S.
So
,
J.
Mun
,
J.
Park
, and
J.
Rho
,
Adv. Mater.
35
,
2206399
(
2023
).
10.
C. G.
Ryan
,
M. R.
Chaharmir
,
J. R. B. J.
Shaker
,
J. R.
Bray
,
Y. M.
Antar
, and
A.
Ittipiboon
,
IEEE Trans. Antennas Propag.
58
,
1486
(
2010
).
11.
N.
Yu
,
P.
Genevet
,
F.
Aieta
,
M. A.
Kats
,
R.
Blanchard
,
G.
Aoust
,
J. P.
Tetienne
,
Z.
Gaburro
, and
F.
Capasso
,
IEEE J. Sel. Top. Quantum Electron.
19
,
4700423
(
2013
).
12.
D. F.
Sievenpiper
,
High-Impedance Electromagnetic Surfaces
(
University of California
,
Los Angeles
,
1999
), p.
18
.
13.
K.
Suzuki
,
P. T.
Dang
,
H.
Homma
,
A. A.
Fathnan
,
S.
Phang
, and
H.
Wakatsuchi
,
Adv. Theory Simul.
7
,
2301173
(
2024
).
14.
N.
Yu
,
P.
Genevet
,
M. A.
Kats
,
F.
Aieta
,
J. P.
Tetienne
,
F.
Capasso
, and
Z.
Gaburro
,
Science
334
,
333
(
2011
).
15.
X.
Yin
,
Z.
Ye
,
J.
Rho
,
Y.
Wang
, and
X.
Zhang
,
Science
339
,
1405
(
2013
).
16.
X.
Chen
,
L.
Huang
,
H.
Mühlenbernd
,
G.
Li
,
B.
Bai
,
Q.
Tan
,
G.
Jin
,
C. W.
Qiu
,
S.
Zhang
, and
T.
Zentgraf
,
Nat. Commun.
3
,
1198
(
2012
).
17.
G.
Zheng
,
H.
Mühlenbernd
,
M.
Kenney
,
G.
Li
,
T.
Zentgraf
, and
S.
Zhang
,
Nat. Nanotechnol.
10
,
308
(
2015
).
18.
G.
Xu
,
A.
Overvig
,
Y.
Kasahara
,
E.
Martini
,
S.
Maci
, and
A.
Alù
,
Nat. Commun.
14
,
4380
(
2023
).
19.
H.
Huang
,
A. C.
Overvig
,
Y.
Xu
,
S. C.
Malek
,
C. C.
Tsai
,
A.
Alù
, and
N.
Yu
,
Nat. Nanotechnol.
18
,
580
(
2023
).
20.
G. B.
Wu
,
J. Y.
Dai
,
Q.
Cheng
,
T. J.
Cui
, and
C. H.
Chan
,
Nat. Electron.
5
,
808
(
2022
).
21.
H.
Boo
,
Y. S.
Lee
,
H.
Yang
,
B.
Matthews
,
T. G.
Lee
, and
C. W.
Wong
,
Sci. Rep.
12
,
5832
(
2022
).
22.
A.
Overvig
,
H.
Huang
,
G.
Xu
,
N.
Yu
, and
A.
Alù
, in
Leaky-Wave Metasurfaces 2023: Proceedings of IEEE Research and Applications of Photonics in Defense Conference (RAPID)
(
IEEE
,
Miramar Beach, FL
,
2023
), pp.
1
2
.
23.
S. N.
Tcvetkova
,
D.-H.
Kwon
,
A.
Díaz-Rubio
, and
S. A.
Tretyakov
,
Phys. Rev. B
97
,
115447
(
2018
).
24.
S. N.
Tcvetkova
,
S.
Maci
, and
S. A.
Tretyakov
,
IEEE Trans. Antennas Propag.
67
,
3200
(
2019
).
25.
H.
Younesiraad
and
M.
Bemani
,
Sci. Rep.
8
,
14865
(
2018
).
26.
J.
Zhou
,
P.
Zhang
,
J.
Han
,
L.
Li
, and
Y.
Huang
,
Proc. IEEE
110
,
31
(
2022
).
27.
M.
Aboualalaa
,
I.
Mansour
, and
R. K.
Pokharel
,
Antennas Wireless Propag. Lett.
21
,
2010
(
2022
).
28.
L.
Li
,
H.
Liu
,
H.
Zhang
, and
W.
Xue
,
IEEE Trans. Ind. Electron.
65
,
3230
(
2018
).
29.
S.
Yu
,
H.
Liu
, and
L.
Li
,
IEEE Trans. Ind. Electron.
66
,
3993
(
2019
).
30.
D. C.
Hogg
,
IEEE Antennas Propag. Mag.
35
,
33
(
1993
).
31.
C. A.
Balanis
,
Antenna Theory: Analysis and Design
(
John wiley & sons
,
2016
), p.
94
.
32.
Ansys
, see https://www.ansys.com/ for “
Navigating the future: Autonomous systems for A&D
” (
2022
).
33.
S.
Khan
,
L.
Lorenzelli
, and
R. S.
Dahiya
,
IEEE Sens. J.
15
,
3164
(
2015
).
34.
H.-S.
Lee
,
L.
Wang
,
J. A.
Bain
, and
D. E.
Laughlin
,
IEEE Trans. Magn.
41
,
654
(
2005
).
35.
Y.
Huang
,
S.
Liao
,
J.
Ren
,
B.
Khalid
,
H.
Peng
, and
H.
Wu
,
Nano Res.
9
,
917
(
2016
).
36.
A.
Yavuz
,
P.
Yilmaz Erdogan
, and
H.
Zengin
,
Int. J. Energy Res.
44
,
11941
(
2020
).
37.
R. T.
Lee
and
G. S.
Smith
,
IEEE Antennas Propag. Mag.
46
,
86
(
2004
).
38.
J.
Zhang
,
L.
Zhang
, and
W.
Xu
,
J. Phys. D: Appl. Phys.
45
,
113001
(
2012
).
39.
D.
Zhang
,
J.
Chen
,
B.
Ratni
,
Y.
Sun
,
K.
Zhang
,
Q.
Wu
,
Y.
Li
,
T.
Jiang
, and
S. N.
Burokur
,
Adv. Mater. Technol.
9
,
2301429
(
2024
).
40.
D.
Zhang
,
X.
Liu
,
Y.
Sun
,
K.
Zhang
,
Q.
Wu
,
Y.
Li
,
T.
Jiang
, and
S. N.
Burokur
,
Opt. Lett.
48
,
1383
(
2023
).
41.
V.
Popov
,
A.
Díaz-Rubio
,
V.
Asadchy
,
S.
Tcvetkova
,
F.
Boust
,
S.
Tretyakov
, and
S. N.
Burokur
,
Phys. Rev. B
100
,
125103
(
2019
).
42.
H.
Homma
,
M. R.
Akram
,
A. A.
Fathnan
,
J.
Lee
,
C.
Christopoulos
, and
H.
Wakatsuchi
,
Nanophotonics
11
,
1989
(
2022
).
43.
R.
Quarfoth
and
D.
Sievenpiper
,
IEEE Trans. Antennas Propag.
63
,
4593
(
2015
).
44.
J.
Lee
and
D. F.
Sievenpiper
,
IEEE Trans. Antennas Propag.
64
,
4725
(
2016
).
45.
H.
Hou
,
J.
Long
,
J.
Wang
, and
D. F.
Sievenpiper
,
IEEE Trans. Antennas Propag.
65
,
1193
(
2017
).
46.
R.
Quarfoth
and
D.
Sievenpiper
,
IEEE Trans. Antennas Propag.
62
,
4143
(
2014
).
47.
H.
Wakatsuchi
,
S.
Kim
,
J. J.
Rushton
, and
D. F.
Sievenpiper
,
Appl. Phys. Lett.
102
,
214103
(
2013
).
48.
H.
Wakatsuchi
,
J. Appl. Phys.
117
,
164904
(
2015
).
49.
L.
Zhou
,
L.
Liu
, and
Z.
Shen
,
IEEE Trans. Antennas Propag.
69
,
7658
(
2021
).
50.
A.
Li
,
Z.
Luo
,
H.
Wakatsuchi
,
S.
Kim
, and
D.
Sievenpiper
,
IEEE Access
5
,
27439
(
2017
).
51.
Y.
Cheng
,
Y.
Qian
,
H.
Homma
,
A. A.
Fathnan
, and
H.
Wakatsuchi
,
IEEE Trans. Antennas Propag.
71
,
8677
(
2023
).
52.
D.
Ushikoshi
,
R.
Higashiura
,
K.
Tachi
,
A. A.
Fathnan
,
S.
Mahmood
,
H.
Takeshita
,
H.
Homma
,
M. R.
Akram
,
S.
Vellucci
,
J.
Lee
,
A.
Toscano
,
A.
Toscano
,
F.
Bilotti
,
C.
Christopoulos
, and
H.
Wakatsuchi
,
Nat. Commun.
14
,
633
(
2023
).
53.
S.
Vellucci
,
A.
Monti
,
M.
Barbuto
,
A.
Toscano
, and
F.
Bilotti
,
IEEE Trans. Antennas Propag.
68
,
1717
(
2020
).
54.
M.
Barbuto
,
D.
Lione
,
A.
Monti
,
S.
Vellucci
,
F.
Bilotti
, and
A.
Toscano
,
IEEE Trans. Antennas Propag.
68
,
7196
(
2020
).
55.
H.
Wakatsuchi
,
J.
Long
, and
D. F.
Sievenpiper
,
Adv. Func. Mater.
29
,
1806386
(
2019
).
56.
A. A.
Fathnan
,
H.
Homma
,
S.
Sugiura
, and
H.
Wakatsuchi
,
J. Phys. D: Appl. Phys.
56
,
015304
(
2023
).
57.
H.
Wakatsuchi
,
D.
Anzai
,
J. J.
Rushton
,
F.
Gao
,
S.
Kim
, and
D. F.
Sievenpiper
,
Sci. Rep.
5
,
9639
(
2015
).
58.
A. A.
Fathnan
,
K.
Takimoto
,
M.
Tanikawa
,
K.
Nakamura
,
S.
Sugiura
, and
H.
Wakatsuchi
,
IEEE Trans. Veh. Technol.
72
,
15103
(
2023
).
59.
K.
Takimoto
,
H.
Takeshita
,
A. A.
Fathnan
,
D.
Anzai
,
S.
Sugiura
, and
H.
Wakatsuchi
,
APL Mater.
11
,
081116
(
2023
).
60.
M. F.
Imani
and
D. R.
Smith
,
Appl. Phys. Lett.
116
,
054102
(
2020
).
61.
N.
Hussain
,
M.
Jeong
,
A.
Abbas
,
T.
Kim
, and
N.
Kim
,
IEEE Access
8
,
22127
(
2020
).
62.
I.
Alamzadeh
,
G. C.
Alexandropoulos
,
N.
Shlezinger
, and
M. F.
Imani
,
Sci. Rep.
11
,
20737
(
2021
).
63.
P.
Zhang
,
L.
Li
,
X.
Zhang
,
H.
Liu
, and
Y.
Shi
,
IEEE Access
7
,
110387
(
2019
).
You do not currently have access to this content.