The laser ablation and subsequent shock generation in solid targets plays an important role in a variety of research topics from equation of state models for materials to inertial confinement fusion. One of the long-standing issues is the knowledge of ablation depth in the picosecond time regime. We report on a direct technique for determining the ablation depth in aluminum using x-ray diffraction data from Linac Coherent Light Source at the Stanford Linear Accelerator Center. This technique gives a direct measurement of the shock wave propagation in the bulk target, enabling an ability to discern early timescale physics from late timescale effects not available in postmortem analysis. We find that the ablation depths only vary by 0.2 μm across three orders of magnitude of laser intensity, while the pressure increased by a factor of 10 following a square root dependence on laser pulse energy. We further observe that the ablation depth in this intensity range (10111013W/cm2inintensity,correspondingto0.880J/cm2influence) cannot be modeled by a universal scaling law, given the complexity of the mechanisms governing laser ablation in this intensity regime.

1.
K.
Batani
,
D.
Batani
,
X. T.
He
, and
K.
Shigemori
, “
Recent progress in matter in extreme states created by laser
,”
Matter Radiat. Extremes
7
,
013001
(
2022
).
2.
E.
Kaselouris
,
I.
Fitilis
,
A.
Skoulakis
,
Y.
Orphanos
,
G.
Koundourakis
,
E. L.
Clark
,
J.
Chatzakis
,
Μ.
Bakarezos
,
N. A.
Papadogiannis
,
V.
Dimitriou
, and
M.
Tatarakis
, “
The importance of the laser pulse-ablator interaction dynamics prior to the ablation plasma phase in inertial confinement fusion studies
,”
Philos. Trans. R. Soc., A
378
(
2184
),
20200030
(
2020
).
3.
E.
Campbell
,
V.
Goncharov
,
T.
Sangster
et al, “
Laser-direct-drive program: Promise, challenge, and path forward
,”
Matter Radiat. Extremes
2
,
37
(
2017
).
4.
R.
Betti
and
O.
Hurricane
, “
Inertial-confinement fusion with lasers
,”
Nat. Phys.
12
,
435
(
2016
).
5.
H.
Takabe
and
Y.
Kuramitsu
, “
Recent progress of laboratory astrophysics with intense lasers
,”
High Pow. Laser Sci. Eng.
9
,
e49
(
2021
).
6.
W. J.
Keller
,
N.
Shen
,
A. M.
Rubenchik
,
S.
Ly
,
R.
Negres
,
R. N.
Raman
,
J.-H.
Yoo
,
G.
Guss
,
J. S.
Stolken
,
M. J.
Matthews
, and
J. D.
Bude
, “
Physics of picosecond pulse laser ablation
,”
J. Appl. Phys.
125
(
8
),
085103
(
2019
).
7.
R. A.
Burdt
,
S.
Yuspeh
,
K. L.
Sequoia
,
Y.
Tao
,
M. S.
Tillack
, and
F.
Najmabadi
, “
Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser
,”
J. Appl. Phys.
106
(
3
),
033310
(
2009
).
8.
S.
Fähler
and
H.-U.
Krebs
, “
Calculations and experiments of material removal and kinetic energy during pulsed laser ablation of metals
,”
Appl. Surf. Sci.
96–98
,
61
65
(
1996
).
9.
S.
Galitskiy
and
A. M.
Dongare
, “
Modeling the damage evolution and recompression behavior during laser shock loading of aluminum microstructures at the mesoscales
,”
J. Mater. Sci.
56
(
6
),
4446
4469
(
2021
).
10.
G.
Miloshevsky
, “
Ultrafast laser matter interactions: Modeling approaches, challenges, and prospects
,”
Modell. Simul. Mater. Sci. Eng.
30
(
8
),
083001
(
2022
).
11.
W. J.
Karzas
and
R.
Latter
, “
Detection of the electromagnetic radiation from nuclear explosions in space
,”
Phys. Rev.
137
(
5B
),
B1369
B1378
(
1965
).
12.
T. R.
Joshi
,
M.
Bailly-Grandvaux
,
R. E.
Turner
,
R. B.
Spielman
,
J. E.
Garay
, and
F. N.
Beg
, “
Observation of laser ablation of silicon as a function of pulse length at constant fluence via time-resolved x-ray spectroscopy
,”
Phys. Plasmas
30
(
12
),
122109
(
2023
).
13.
C.
Momma
,
B. N.
Chichkov
,
S.
Nolte
,
F.
von Alvensleben
,
A.
Tünnermann
,
H.
Welling
, and
B.
Wellegehausen
, “
Short-pulse laser ablation of solid targets
,”
Opt. Commun.
129
,
134
142
(
1996
).
14.
D. E.
Fratanduono
,
T. R.
Boehly
,
P. M.
Celliers
,
M. A.
Barrios
,
J. H.
Eggert
,
R. F.
Smith
,
D. G.
Hicks
,
G. W.
Collins
, and
D. D.
Meyerhofer
, “
The direct measurement of ablation pressure driven by 351-nm laser radiation
,”
J. Appl. Phys.
110
(
7
),
073110
(
2011
).
15.
S. E.
Parsons
,
R. E.
Turner
,
M. R.
Armstrong
,
H. B.
Radousky
,
J. E.
Garay
, and
F. N.
Beg
, “
Laser material interactions in tamped materials on picosecond time scales in aluminum
,”
Appl. Phys. Lett.
123
(
20
),
204102
(
2023
).
16.
A.
Ng
,
D.
Pasini
,
P.
Celliers
,
D.
Parfeniuk
,
L.
Da Silva
, and
J.
Kwan
, “
Ablation scaling in steady-state ablation dominated by inverse-bremsstrahlung absorption
,”
Appl. Phys. Lett.
45
(
10
),
1046
1048
(
1984
).
17.
J.
Grun
,
R.
Decoste
,
B. H.
Ripin
, and
J.
Gardner
, “
Characteristics of ablation plasma from planar, laser-driven targets
,”
Appl. Phys. Lett.
39
(
7
),
545
547
(
1981
).
18.
J.
Grun
,
S. P.
Obenschain
,
B. H.
Ripin
,
R. R.
Whitlock
,
E. A.
McLean
,
J.
Gardner
,
M. J.
Herbst
, and
J. A.
Stamper
, “
Ablative acceleration of planar targets to high velocities
,”
Phys. Fluids
26
(
2
),
588
597
(
1983
).
19.
F.
Dahmani
, “
Experimental scaling laws for mass‐ablation rate, ablation pressure in planar laser‐produced plasmas with laser intensity, laser wavelength, and target atomic number
,”
J. Appl. Phys.
74
(
1
),
622
634
(
1993
).
20.
T. S.
Shirsat
,
H. D.
Parab
, and
H. C.
Pant
, “
Effect of target atomic number on laser induced ablation pressure scaling
,”
Laser Part. Beams
7
(
4
),
795
805
(
1989
).
21.
P.
Mora
, “
Theoretical model of absorption of laser light by a plasma
,”
Phys. Fluids
25
(
6
),
1051
1056
(
1982
).
22.
L.
Zhou
,
X.-Y.
Li
,
W.-J.
Zhu
,
J.-X.
Wang
, and
C.-J.
Tang
, “
The effects of pulse duration on ablation pressure driven by laser radiation
,”
J. Appl. Phys.
117
(
12
),
125904
(
2015
).
23.
N. A.
Vasantgadkar
,
U. V.
Bhandarkar
, and
S. S.
Joshi
, “
A finite element model to predict the ablation depth in pulsed laser ablation
,”
Thin Solid Films
519
(
4
),
1421
1430
(
2010
).
24.
M. R.
Armstrong
,
H. B.
Radousky
,
R. A.
Austin
,
E.
Stavrou
,
H.
Zong
,
G. J.
Ackland
,
S.
Brown
,
J. C.
Crowhurst
,
A. E.
Gleason
,
E.
Granados
,
P.
Grivickas
,
N.
Holtgrewe
,
H. J.
Lee
,
T. T.
Li
,
S.
Lobanov
,
J. T.
McKeown
,
B.
Nagler
,
I.
Nam
,
A. J.
Nelson
,
V.
Prakapenka
,
C.
Prescher
,
J. D.
Roehling
,
N. E.
Teslich
,
P.
Walter
,
A. F.
Goncharov
, and
J. L.
Belof
, “
Observation of fundamental mechanisms in compression-induced phase transformations using ultrafast x-ray diffraction
,”
JOM
73
(
7
),
2185
2193
(
2021
).
25.
M. R.
Armstrong
,
J. C.
Crowhurst
,
S.
Bastea
, and
J. M.
Zaug
, “
Ultrafast observation of shocked states in a precompressed material
,”
J. Appl. Phys.
108
(
2
),
023511
(
2010
).
26.
H. B.
Radousky
,
M. R.
Armstrong
,
R. A.
Austin
,
E.
Stavrou
,
S.
Brown
,
A. A.
Chernov
,
A. E.
Gleason
,
E.
Granados
,
P.
Grivickas
,
N.
Holtgrewe
,
H. J.
Lee
,
S. S.
Lobanov
,
B.
Nagler
,
I.
Nam
,
V.
Prakapenka
,
C.
Prescher
,
P.
Walter
,
A. F.
Goncharov
, and
J. L.
Belof
, “
Melting and refreezing of zirconium observed using ultrafast x-ray diffraction
,”
Phys. Rev. Res.
2
(
1
),
013192
(
2020
).
27.
C.
Prescher
and
V. B.
Prakapenka
, “
DIOPTAS: A program for reduction of two-dimensional x-ray diffraction data and data exploration
,”
High Pressure Res.
35
(
3
),
223
230
(
2015
).
28.
See scipy.signal.find_peaks for “
SciPy v1.13.0 manual
.”
29.
See scipy.optimize.curve_fit for “
SciPy v1.13.0 manual
.”
30.
S. P.
Marsh
,
LASL Shock Hugoniot Data
(
University of California Press
,
1980
).
31.
J. C.
Crowhurst
,
M. R.
Armstrong
,
K. B.
Knight
,
J. M.
Zaug
, and
E. M.
Behymer
, “
Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold
,”
Phys. Rev. Lett.
107
(
14
),
144302
(
2011
).
32.
J.
Colvin
and
J.
Larsen
,
Extreme Physics: Properties and Behavior of Matter at Extreme Conditions
, 1st ed. (
Cambridge University Press
,
2013
).
33.
R. V.
Davydov
and
V. I.
Antonov
, “
Research and modeling of laser ablation by ultra-short laser pulses for metal targets
,”
J. Phys.: Conf. Ser.
1368
(
2
),
022007
(
2019
).
34.
Y.
Wang
and
D.
Hahn
, “
A simple finite element model to study the effect of plasma plume expansion on the nanosecond pulsed laser ablation of aluminum
,”
Appl. Phys. A
125
,
654
(
2019
).
35.
H.
Simons
,
A.
King
,
W.
Ludwig
,
C.
Detlefs
,
W.
Pantleon
,
S.
Schmidt
,
F.
Stöhr
,
I.
Snigireva
,
A.
Snigirev
, and
H. F.
Poulsen
, “
Dark-field x-ray microscopy for multiscale structural characterization
,”
Nat. Commun.
6
(
1
),
6098
(
2015
).
36.
R.
Le Harzic
,
D.
Breitling
,
M.
Weikert
,
S.
Sommer
,
C.
Föhl
,
S.
Valette
,
C.
Donnet
,
E.
Audouard
, and
F.
Dausinger
, “
Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps
,”
Appl. Surf. Sci.
249
(
1
),
322
331
(
2005
).
37.
B.
Le Drogoff
,
F.
Vidal
,
S.
Laville
,
M.
Chaker
,
T.
Johnston
,
O.
Barthélemy
,
J.
Margot
, and
M.
Sabsabi
, “
Laser-ablated volume and depth as a function of pulse duration in aluminum targets
,”
Appl. Opt.
44
,
278
281
(
2005
).
38.
M.
Olbrich
,
E.
Punzel
,
R.
Roesch
,
R.
Oettking
,
B.
Muhsin
,
H.
Hoppe
, and
A.
Horn
, “
Case study on the ultrafast laser ablation of thin aluminum films: Dependence on laser parameters and film thickness
,”
Appl. Phys. A
122
,
215
(
2016
).
39.
H. B.
Radousky
,
M. R.
Armstrong
, and
N.
Goldman
, “
Time resolved x-ray diffraction in shock compressed systems
,”
J. Appl. Phys.
129
(
4
),
040901
(
2021
).
You do not currently have access to this content.