Broadband impedance-matched Josephson parametric amplifiers are key components for high-fidelity single-shot multi-qubit readout. Nowadays, several types of impedance matched parametric amplifiers have been proposed: the first is an impedance-matched parametric amplifier based on a Klopfenstein taper, and the second is the impedance-matched parametric amplifier based on auxiliary resonators. Here, we present the quantum-limited 3-wave-mixing lumped-element SNAIL parametric amplifier with two-pole impedance matching transformer. A two-pole Chebyshev matching network with shunted resonators is based on parallel-plate capacitors and superconducting planar coil. Operating in a flux-pumped mode, we experimentally demonstrate an average gain of 15 dB across a 600 MHz bandwidth, along with an average saturation power of −107 dBm and quantum-limited noise temperature.

1.
D. M.
Pozar
, Microwave Engineering, 4th ed. (John Wiley & Sons, Inc., 2010). ISBN: 978-0-470-63155-3
2.
J.
Heinsoo
,
C. K.
Andersen
,
A.
Remm
,
S.
Krinner
,
T.
Walter
,
Y.
Salathé
, and
C.
Eichler
, “
Rapid high-fidelity multiplexed readout of superconducting qubits
,”
Phys. Rev. Appl.
10
(
3
),
034040
(
2018
).
3.
Z. R.
Lin
,
K.
Inomata
,
W. D.
Oliver
,
K.
Koshino
,
Y.
Nakamura
,
J. S.
Tsai
, and
T.
Yamamoto
, “
Single-shot readout of a superconducting flux qubit with a flux-driven Josephson parametric amplifier
,”
Appl. Phys. Lett.
103
(
13
),
132602
(
2013
).
4.
B.
Abdo
,
F.
Schackert
,
M.
Hatridge
,
C.
Rigetti
, and
M.
Devoret
, “
Josephson amplifier for qubit readout
,”
Appl. Phys. Lett.
99
(
16
),
162506
(
2011
).
5.
N. S.
Smirnov
,
E. A.
Krivko
,
A. A.
Solovyova
,
A. I.
Ivanov
, and
I. A.
Rodionov
, “
Wiring surface loss of a superconducting transmon qubit
,”
Sci. Rep.
14
,
7326
(
2024
).
6.
T.
Walter
,
P.
Kurpiers
,
S.
Gasparinetti
,
P.
Magnard
,
A.
Potočnik
,
Y.
Salathé
, and
A.
Wallraff
, “
Rapid high-fidelity single-shot dispersive readout of superconducting qubits
,”
Phys. Rev. Appl.
7
(
5
),
054020
(
2017
).
7.
C.
Macklin
,
K.
O'brien
,
D.
Hover
,
M. E.
Schwartz
,
V.
Bolkhovsky
,
X.
Zhang
, and
I.
Siddiqi
, “
A near–quantum-limited Josephson traveling-wave parametric amplifier
,”
Science
350
(
6258
),
307
310
(
2015
).
8.
T. C.
White
,
J. Y.
Mutus
,
I. C.
Hoi
,
R.
Barends
,
B.
Campbell
,
Y.
Chen
, and
J. M.
Martinis
, “
Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching
,”
Appl. Phys. Lett.
106
(
24
),
242601
(
2015
).
9.
S.
Kundu
,
N.
Gheeraert
,
S.
Hazra
,
T.
Roy
,
K. V.
Salunkhe
,
M. P.
Patankar
, and
R.
Vijay
, “
Multiplexed readout of four qubits in 3D circuit QED architecture using a broadband Josephson parametric amplifier
,”
Appl. Phys. Lett.
114
(
17
),
172601
(
2019
).
10.
S. J.
Asztalos
,
G.
Carosi
,
C.
Hagmann
,
D.
Kinion
,
K.
Van Bibber
,
M.
Hotz
, and
J.
Clarke
, “
SQUID-based microwave cavity search for dark-matter axions
,”
Phys. Rev. Lett.
104
(
4
),
041301
(
2010
).
11.
A.
Wallraff
,
D. I.
Schuster
,
A.
Blais
,
L.
Frunzio
,
J.
Majer
,
M. H.
Devoret
, and
R. J.
Schoelkopf
, “
Approaching unit visibility for control of a superconducting qubit with dispersive readout
,”
Phys. Rev. Lett.
95
(
6
),
060501
(
2005
).
12.
G. P.
Fedorov
,
S. V.
Remizov
,
D. S.
Shapiro
,
W. V.
Pogosov
,
E.
Egorova
,
I.
Tsitsilin
, and
A. V.
Ustinov
, “
Photon transport in a Bose-Hubbard chain of superconducting artificial atoms
,”
Phys. Rev. Lett.
126
(
18
),
180503
(
2021
).
13.
P.
Kumar
,
O.
Aytür
, and
J.
Huang
, “
Squeezed-light generation with an incoherent pump
,”
Phys. Rev. Lett.
64
(
9
),
1015
1101
(
1990
).
14.
A. R.
Matanin
,
K. I.
Gerasimov
,
E. S.
Moiseev
,
N. S.
Smirnov
,
A. I.
Ivanov
,
E. I.
Malevannaya
, and
S. A.
Moiseev
, “
Towards highly efficient broadband superconducting quantum memory
,”
Phys. Rev. Appl.
19
(
3
),
034011
(
2023
).
15.
E. V.
Zikiy
,
A. I.
Ivanov
,
N. S.
Smirnov
et al, “
High-Q trenched aluminum coplanar resonators with an ultrasonic edge microcutting for superconducting quantum devices
,”
Sci. Rep.
13
,
15536
(
2023
).
16.
E. I.
Rosenthal
,
C. M.
Schneider
,
M.
Malnou
,
Z.
Zhao
,
F.
Leditzky
,
B. J.
Chapman
, and
K. W.
Lehnert
, “
Efficient and low-backaction quantum measurement using a chip-scale detector
,”
Phys. Rev. Lett.
126
(
9
),
090503
(
2021
).
17.
Ç.
Kutlu
,
A. F.
van Loo
,
S. V.
Uchaikin
,
A. N.
Matlashov
,
D.
Lee
,
S.
Oh
, and
Y. K.
Semertzidis
, “
Characterization of a flux-driven Josephson parametric amplifier with near quantum-limited added noise for axion search experiments
,”
Supercond. Sci. Technol.
34
(
8
),
085013
(
2021
).
18.
M. R.
Perelshtein
,
K. V.
Petrovnin
,
V.
Vesterinen
,
S.
Hamedani Raja
,
I.
Lilja
,
M.
Will
, and
P. J.
Hakonen
, “
Broadband continuous-variable entanglement generation using a Kerr-free Josephson metamaterial
,”
Phys. Rev. Appl.
18
(
2
),
024063
(
2022
).
19.
M.
Renger
,
S.
Pogorzalek
,
Q.
Chen
,
Y.
Nojiri
,
K.
Inomata
,
Y.
Nakamura
, and
K. G.
Fedorov
, “
Beyond the standard quantum limit for parametric amplification of broadband signals
,”
npj Quantum Inf.
7
(
1
),
160
(
2021
).
20.
J. Y.
Mutus
,
T. C.
White
,
R.
Barends
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
, and
J. M.
Martinis
, “
Strong environmental coupling in a Josephson parametric amplifie
,”
Appl. Phys. Lett.
104
(
26
),
263513
(
2014
).
21.
R.
Yang
and
H.
Deng
, “
Fabrication of the impedance-matched Josephson parametric amplifier and the study of the gain profile
,”
IEEE Trans. Appl. Supercond.
30
(
6
),
1100306
(
2020
).
22.
K.
Huang
,
Q.
Guo
,
C.
Song
,
Y.
Zheng
, and
D.
Zheng
, “
Fabrication and characterization of ultra-low noise narrow and wide band Josephson parametric amplifiers
,”
Chin. Phys. B
26
,
094203
(
2017
).
23.
Y.
Lu
,
W.
Xu
,
Q.
Zuo
,
J.
Pan
, and
P.
Wu
, “
Broadband Josephson parametric amplifier using lumped-element transmission line impedance matching architecture
,”
Appl. Phys. Lett.
120
(
8
),
082601
(
2022
).
24.
T.
Roy
,
S.
Kundu
,
M.
Chand
,
A. M.
Vadiraj
,
A.
Ranadive
,
N.
Nehra
, and
R.
Vijay
, “
Broadband parametric amplification with impedance engineering: Beyond the gain-bandwidth product
,”
Appl. Phys. Lett.
107
(
26
),
262601
(
2015
).
25.
J.
Grebel
,
A.
Bienfait
,
É.
Dumur
,
H. S.
Chang
,
M. H.
Chou
,
C. R.
Conner
, and
A. N.
Cleland
, “
Flux-pumped impedance-engineered broadband Josephson parametric amplifier
,”
Appl. Phys. Lett.
118
(
14
),
142601
(
2021
).
26.
P.
Duan
,
Z.
Jia
,
C.
Zhang
,
L.
Du
,
H.
Tao
,
X.
Yang
, and
G. P.
Guo
, “
Broadband flux-pumped Josephson parametric amplifier with an on-chip coplanar waveguide impedance transformer
,”
Appl. Phys. Express
14
(
4
),
042011
(
2021
).
27.
S.
Wu
,
D.
Zhang
,
R.
Wang
,
Y.
Liu
,
S. P.
Wang
,
Q.
Liu
, and
T.
Li
, “
Vacuum-gap-based lumped element Josephson parametric amplifier
,”
Chin. Phys. B
31
(
1
),
010306
(
2022
).
28.
D.
Ezenkova
,
D.
Moskalev
,
N.
Smirnov
,
A.
Ivanov
,
I.
Rodionov
et al, “
Broadband SNAIL parametric amplifier with microstrip impedance transformer
,”
Appl. Phys. Lett.
121
(
23
),
232601
(
2022
).
29.
R.
Kaufman
,
T.
White
,
M.
Dykman
,
A.
Iorrio
,
G.
Sterling
,
S.
Hong
,
A.
Opremcak
,
A.
Bengtsson
,
L.
Faoro
,
J.
Bardin
,
T.
Burger
,
R.
Gasca
, and
O.
Naaman
, “
Josephson parametric amplifier with Chebyshev gain profile and high satutation
,”
Phys. Rev. Appl.
20
(
5
),
054058
(
2023
).
30.
L.
Ranzani
,
G.
Ribeill
,
B.
Hassick
, and
K. C.
Fong
, “
Wideband Josephson parametric amplifier with integrated transmission line transformer
,” in
IEEE International Conference on Quantum Computing and Engineering (QCE)
(
IEEE
,
2022
), pp.
314
319
.
31.
N. E.
Frattini
,
U.
Vool
,
S.
Shankar
,
A.
Narla
,
K. M.
Sliwa
, and
M. H.
Devoret
, “
3-wave mixing Josephson dipole element
,”
Appl. Phys. Lett.
110
(
22
),
222603
(
2017
).
32.
N. E.
Frattini
,
V. V.
Sivak
,
A.
Lingenfelter
,
S.
Shankar
, and
M. H.
Devoret
, “
Optimizing the nonlinearity and dissipation of a snail parametric amplifier for dynamic range
,”
Phys. Rev. Appl.
10
(
5
),
054020
(
2018
).
33.
V. V.
Sivak
,
N. E.
Frattini
,
V. R.
Joshi
,
A.
Lingenfelter
,
S.
Shankar
, and
M. H.
Devoret
, “
Kerr-free three-wave mixing in superconducting quantum circuits
,”
Phys. Rev. Appl.
11
(
5
),
054060
(
2019
).
34.
W.
Getsinger
, “
Prototypes for use in broadbanding reflection amplifiers
,”
IEEE Trans. Microwave Theory Tech.
11
(
6
),
486
497
(
1963
).
35.
O.
Naaman
and
J.
Aumentado
, “
Synthesis of parametrically coupled networks
,”
PRX Quantum
3
(
2
),
020201
(
2022
).
36.
A. A.
Pishchimova
,
N. S.
Smirnov
,
D. A.
Ezenkova
,
E. A.
Krivko
,
E. V.
Zikiy
,
D. O.
Moskalev
,
A. I.
Ivanov
,
N. D.
Korshakov
, and
I. A.
Rodionov
, “
Improving Josephson junction reproducibility for superconducting quantum circuits: Junction area fluctuation
,”
Sci. Rep.
13
,
6772
(
2023
).
37.
D. O.
Moskalev
,
E. V.
Zikiy
,
A. A.
Pishchimova
,
D. A.
Ezenkova
,
N. S.
Smirnov
,
A. I.
Ivanov
,
N. D.
Korshakov
, and
I. A.
Rodionov
, “
Optimization of shadow evaporation and oxidation for reproducible quantum Josephson junction circuits
,”
Sci. Rep.
13
,
4174
(
2023
).
You do not currently have access to this content.