Fe2P2O7 is a multifunctional material and has potential applications in a variety of fields but there exist controversies in the postulated space groups and studies on its phase transition and thermal expansion properties are still lacking. High-resolution synchrotron radiation x-ray diffraction, first-principles calculations, and specific heat capacity analyses are applied to solve these problems. The results reveal that Fe2P2O7 crystallizes in a triclinic structure with the C1¯ space group at low temperatures (α phase) and undergoes successive phase transitions to an intermediate phase (α′) at about 346 K and a monoclinic structure with the B21/c space group (β phase) at about 456 K. Fe2P2O7 exhibits a low, giant negative, and near-zero thermal expansion in the regions of 100–325, 325–375, and 375–475 K, respectively. The Jahn–Teller effect of Fe2+ ions and their transition from the static to dynamic one by thermal activation are proposed to account for the unique thermal expansion/contraction properties.

1.
T. A.
Mary
,
J. S. O.
Evans
,
T.
Vogt
, and
A. W.
Sleight
,
Science
272
(
5258
),
90
(
1996
).
2.
J.
Chen
,
L.
Hu
,
J.
Deng
, and
X.
Xing
,
Chem. Soc. Rev.
44
(
11
),
3522
(
2015
).
3.
M. T.
Dove
and
H.
Fang
,
Rep. Prog. Phys.
79
(
6
),
066503
(
2016
).
4.
E.
Liang
,
Q.
Sun
,
H.
Yuan
,
J.
Wang
,
G.
Zeng
, and
Q.
Gao
,
Front. Phys.
16
(
5
),
53302
(
2021
).
5.
T. A.
Mary
and
A. W.
Sleight
,
J. Mater. Res.
14
(
3
),
912
(
1999
).
6.
J.
Wang
,
P.
Xu
,
H.
Yuan
,
Q.
Gao
,
Q.
Sun
, and
E.
Liang
,
Results Phys.
19
,
103531
(
2020
).
7.
H.
Fang
,
M. T.
Dove
,
L. H. N.
Rimmer
, and
A. J.
Misquitta
,
Phys. Rev. B
88
(
10
),
104306
(
2013
).
8.
M. K.
Gupta
,
B.
Singh
,
R.
Mittal
,
M.
Zbiri
,
A. B.
Cairns
,
A. L.
Goodwin
,
H.
Schober
, and
S. L.
Chaplot
,
Phys. Rev. B
96
(
21
),
214303
(
2017
).
9.
Q.
Gao
,
J.
Wang
,
A.
Sanson
,
Q.
Sun
,
E.
Liang
,
X.
Xing
, and
J.
Chen
,
J. Am. Chem. Soc.
142
(
15
),
6935
(
2020
).
10.
B. K.
Greve
,
K. L.
Martin
,
P. L.
Lee
,
P. J.
Chupas
,
K. W.
Chapman
, and
A. P.
Wilkinson
,
J. Am. Chem. Soc.
132
(
44
),
15496
(
2010
).
11.
J. C.
Hancock
,
K. W.
Chapman
,
G. J.
Halder
,
C. R.
Morelock
,
B. S.
Kaplan
,
L. C.
Gallington
,
A.
Bongiorno
,
C.
Han
,
S.
Zhou
, and
A. P.
Wilkinson
,
Chem. Mater.
27
(
11
),
3912
(
2015
).
12.
W.
Zhou
,
H.
Wu
,
T.
Yildirim
,
J. R.
Simpson
, and
A. R.
Hight Walker
,
Phys. Rev. B
78
(
5
),
054114
(
2008
).
13.
K.
Takenaka
and
H.
Takagi
,
Appl. Phys. Lett.
87
(
26
),
261902
(
2005
).
14.
Y.
Sun
,
C.
Wang
,
Y.
Wen
,
K.
Zhu
, and
J.
Zhao
,
Appl. Phys. Lett.
91
(
23
),
231913
(
2007
).
15.
X. G.
Guo
,
P.
Tong
,
J. C.
Lin
,
C.
Yang
,
K.
Zhang
,
M.
Wang
,
Y.
Wu
,
S.
Lin
,
W. H.
Song
, and
Y. P.
Sun
,
Scr. Mater.
128
,
74
(
2017
).
16.
W.
Sun
,
H.
Zhang
,
W.
Li
,
R.
Huang
,
Y.
Zhao
,
W.
Wang
, and
L.
Li
,
AIP Adv.
10
(
7
),
075123
(
2020
).
17.
A.
Shuitcev
,
R. N.
Vasin
,
A. M.
Balagurov
,
L.
Li
,
I. A.
Bobrikov
, and
Y. X.
Tong
,
Intermetallics
125
,
106889
(
2020
).
18.
K.
Pogorzelec-Glaser
,
A.
Pietraszko
,
B.
Hilczer
, and
M.
Połomska
,
Phase Transit.
79
(
6–7
),
535
(
2006
).
19.
N.
Shi
,
A.
Sanson
,
Q.
Gao
,
Q.
Sun
,
Y.
Ren
,
Q.
Huang
,
D. O.
de Souza
,
X.
Xing
, and
J.
Chen
,
J. Am. Chem. Soc.
142
(
6
),
3088
(
2020
).
20.
Y.
Kadowaki
,
R.
Kasugai
,
Y.
Yokoyama
,
N.
Katayama
,
Y.
Okamoto
, and
K.
Takenaka
,
Appl. Phys. Lett.
119
(
20
),
201906
(
2021
).
21.
Y.
Du
,
Q.
Gao
,
A.
Sanson
,
H.
Xie
,
Y.
Hu
,
G.
Zeng
,
J.
Guo
,
X.
Ren
, and
E.
Liang
,
Results Phys.
35
,
105415
(
2022
).
22.
R.
Chen
,
Q.
Gao
,
Y.
Qiao
,
J.
Guo
, and
E.
Liang
,
Scr. Mater.
214
,
114653
(
2022
).
23.
G.
Zeng
,
Y.
Gao
,
J.
Guo
,
Y.
Qiao
,
E.
Liang
, and
Q.
Gao
,
Ceram. Int.
49
(
24, Part A
),
39843
(
2023
).
24.
T.
Ericsson
,
A. G.
Nord
,
M. M. O.
Ahmed
,
A.
Gismelseed
, and
F.
Khangi
,
Hyperfine Interact.
57
(
1
),
2179
(
1990
).
25.
Q.
Shi
,
L.
Zhang
,
M. E.
Schlesinger
,
J.
Boerio-Goates
, and
B. F.
Woodfield
,
J. Chem. Thermodyn.
61
,
51
(
2013
).
26.
S.
Nishimura
,
M.
Nakamura
,
R.
Natsui
, and
A.
Yamada
,
J. Am. Chem. Soc.
132
(
39
),
13596
(
2010
).
27.
M.
Tamaru
,
S. C.
Chung
,
D.
Shimizu
,
S.
Nishimura
, and
A.
Yamada
,
Chem. Mater.
25
(
12
),
2538
(
2013
).
28.
H.
Li
,
T.
Liu
,
Y.
He
,
J.
Song
,
A.
Meng
,
C.
Sun
,
M.
Hu
,
L.
Wang
,
G.
Li
,
Z.
Zhang
,
Y.
Liu
,
J.
Zhao
, and
Z.
Li
,
ACS Appl. Mater. Interfaces
14
(
2
),
3363
(
2022
).
29.
G.-H.
Lee
,
S.-D.
Seo
,
H.-W.
Shim
,
K.-S.
Park
, and
D.-W.
Kim
,
Ceram. Int.
38
(
8
),
6927
(
2012
).
30.
Z.
Wei Xiao
,
G. R.
Hu
,
Z. D.
Peng
,
K.
Du
, and
X. G.
Gao
,
Chin. Chem. Lett.
18
(
12
),
1525
(
2007
).
31.
T.
Stefanidis
and
A. G.
Nord
,
Z. Kristallogr.
159
(
1–4
),
255
(
1982
).
32.
J. T.
Hoggins
,
J. S.
Swinnea
, and
H.
Steinfink
,
J. Solid State Chem.
47
(
3
),
278
(
1983
).
33.
C.
Parada
,
J.
Perles
,
R.
Sáez-Puche
,
C.
Ruiz-Valero
, and
N.
Snejko
,
Chem. Mater.
15
(
17
),
3347
(
2003
).
34.
E. J.
Baran
,
I. L.
Botto
, and
A. G.
Nord
,
J. Mol. Struct.
143
,
151
(
1986
).
35.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
(
16
),
11169
(
1996
).
36.
T.
Yamashita
and
P.
Hayes
,
Appl. Surf. Sci.
254
(
8
),
2441
(
2008
).
38.
K.
Robinson
,
G. V.
Gibbs
, and
P. H.
Ribbe
,
Science
172
(
3983
),
567
(
1971
).
39.
M. D.
Sturge
, in
Solid State Physics
, edited by
F.
Seitz
,
D.
Turnbull
, and
H.
Ehrenreich
(
Academic Press
,
1968
), Vol.
20
, p.
91
.
40.
L.
Palatinus
,
M.
Dusek
,
R.
Glaum
, and
B. E.
Bali
,
Acta Cryst.
B62
,
556
566
(
2006
).
41.
C. J.
Simmons
,
New. J. Chem.
17
(1–2)
,
77
95
(
1993
).
You do not currently have access to this content.