I-line stepper is widely used in large scale device manufacturing with limited achievable critical dimension by itself. With the aid of the spacer sidewall, the critical dimension can be further shrunk down. Spacer sidewall aided process necessitates an additional deposition-etching process, which inevitably results in process related damage under the gate. This paper proposes an optimized spacer sidewall aided gate patterning procedure for 0.15 μm GaN High Electron Mobility Transistors (HEMTs) fabrication. The process is proved to be effective in improving device performance compared to conventional sidewall process by keeping first Si-rich SiN passivation layer integrity at the gate edge. Interface trap density (Dit) and mobility were extracted for both conventional sidewall process and the optimized one with different passivation layers at the gate edge, demonstrating a lower Dit and higher mobility using the optimized process with enhanced device performances, such as higher current, breakdown voltage, and stress state characteristics, compared to the conventional process, which is promising for mass production of 0.15 μm GaN HEMTs.

1.
N.
Zhang
,
High Voltage GaN HEMTs with Low On-Resistance for Switching Applications
(
University of California
,
Santa Barbara
,
2020
).
2.
J.
Jha
,
S.
Surapaneni
,
A. S.
Kumar
,
S.
Ganguly
, and
D.
Saha
, “
Effect of width scaling on RF and DC performance of AlGaN/GaN-based Ku-band multi-finger 250 nm high electron mobility transistor technology
,”
Solid-State Electron.
186
,
108138
(
2021
).
3.
K.
Boutros
,
M.
Regan
,
P.
Rowell
,
D.
Gotthold
,
R.
Birkhahn
, and
B.
Brar
, “
High performance GaN HEMTs at 40 GHz with power density of 2.8W/Mm
,” in
IEEE International Electron Devices Meeting 2003
(
IEEE
,
2004
), p.
12.5.2
.
4.
V. D.
Giacomo-Brunel
,
E.
Byk
,
C.
Chang
,
J.
Grünenpütt
,
B.
Lambert
,
G.
Mouginot
,
D.
Sommer
,
H.
Jung
,
M.
Camiade
,
P.
Fellon
,
D.
Floriot
,
H.
Blanck
, and
J.-P.
Viaud
, “
Industrial 0.15-μm AlGaN/GaN on SiC technology for applications up to Ka band
,” in
13th European Microwave Integrated Circuits Conference (EuMIC)
(
IEEE
,
2018
), pp.
1
4
.
5.
C.
Ren
,
Z.
Li
,
X.
Yu
,
Q.
Wang
,
W.
Wang
,
T.
Chen
, and
B.
Zhang
, “
Field plated 0.15 μm GaN HEMTs for millimeter-wave application
,”
J. Semicond.
34
(
6
),
064002
(
2013
).
6.
Y.
Ando
,
R.
Makisako
,
H.
Takahashi
,
A.
Wakejima
, and
J.
Suda
, “
Fabrication of 150-nm AlGaN/GaN field-plated high electron mobility transistors using i-line stepper
,”
Electron. Lett.
57
(
24
),
948
949
(
2021
).
7.
J.
Xu
,
S.
Zhang
,
P.
Zheng
,
R.
Wang
, and
X.
Tong
, “
Non-ebeam AlGaN/GaN HEMTs with fmax of 206 GHz for mass production
,” in
International Conference on Microwave and Millimeter Wave Technology (ICMMT)
(
IEEE
,
2019
), pp.
1
3
.
8.
J.
Hållstedt
,
P.-E.
Hellström
, and
H. H.
Radamson
, “
Sidewall transfer lithography for reliable fabrication of nanowires and deca-nanometer MOSFETs
,”
Thin Solid Films
517
(
1
),
117
120
(
2008
).
9.
Y.-K.
Choi
,
T.-J.
King
, and
C.
Hu
, “
A spacer patterning technology for nanoscale CMOS
,”
IEEE Trans. Electron Devices
49
(
3
),
436
441
(
2002
).
10.
L.
Grönberg
,
M.
Kiviranta
,
V.
Vesterinen
,
J.
Lehtinen
,
S.
Simbierowicz
,
J.
Luomahaara
,
M.
Prunnila
, and
J.
Hassel
, “
Side-wall spacer passivated sub-μm Josephson junction fabrication process
,”
Supercond. Sci. Technol.
30
(
12
),
125016
(
2017
).
11.
S.
Omar
,
Process Development of Sidewall Spacer Features for Sub-300 nm Dense Silicon FinFETs
(
Rochester Institute of Technology
,
2017
).
12.
C.
Shay
,
CD Reduction through Annular Illumination and Sidewall Spacers
(
Rochester Institute of Technology
,
2016
).
13.
A.
Ping
,
W.
Liebl
,
G.
Mahoney
,
S.
Mahon
, and
O.
Berger
, “
A High-Performance 0.13-μm AlGaAs/InGaAs pHEMT Process Using Sidewall Spacer Technology
,”
Eng. Phys.
(
2005
); available at https://api.semanticscholar.org/CorpusID:201736836.
14.
K. M.
Bothe
,
B.
Schmukler
,
S.
Ganguly
,
T.
Alcorn
,
J.
Gao
,
C.
Hardiman
,
E.
Jones
,
D.
Namishia
,
F.
Radulescu
,
J.
Barner
,
J.
Fisher
,
D. A.
Gajewski
,
S. T.
Sheppard
,
J. W.
Milligan
,
A. C.
Company
, and
K.
Bothe
, “
Optically-Defined 150-nm, 28-V GaN HEMT Process for Ka-band
,” in
CS MANTECH Conf.
(
CS MANTECH
,
2019
).
15.
S. M.
Wood
,
S. T.
Sheppard
,
F.
Radulescu
,
D. A.
Gajewski
,
B.
Pribble
,
D.
Farrell
,
U.
Andre
,
J. B.
Barner
,
J.
Milligan
, and
J.
Palmour
, “
An Optical 0.25 μm GaN HEMT Technology on 100 mm SiC for RF Discrete and Foundry MMIC Products
,” in
CS MANTECH Conf.
, New Orleans, LA (
CS MANTECH
,
2013
).
16.
T.
Huang
,
A.
Malmros
,
J.
Bergsten
,
S.
Gustafsson
,
O.
Axelsson
,
M.
Thorsell
, and
N.
Rorsman
, “
Suppression of dispersive effects in AlGaN/GaN high-electron-mobility transistors using bilayer SiN grown by low pressure chemical vapor deposition
,”
IEEE Electron Device Lett.
36
(
6
),
537
539
(
2015
).
17.
K.
Makiyama
,
T.
Ohki
,
N.
Okamoto
,
M.
Kanamura
,
S.
Masuda
,
Y.
Nakasha
,
K.
Joshin
,
K.
Imanishi
,
N.
Hara
,
S.
Ozaki
,
N.
Nakamura
, and
T.
Kikkawa
, “
High-power GaN-HEMT with low current collapse for millimeter-wave amplifier
,”
Phys. Status Solidi C
8
(
7–8
),
2442
2444
(
2011
).
18.
J.
Liu
,
M.
Mi
,
J.
Zhu
,
S.
Liu
,
P.
Wang
,
Y.
Zhou
,
Q.
Zhu
,
M.
Wu
,
H.
Lu
,
B.
Hou
,
H.
Wang
,
X.
Cai
,
Y.
Zhang
,
X.
Duan
,
L.
Yang
,
X.
Ma
, and
Y.
Hao
, “
Improved power performance and the mechanism of AlGaN/GaN HEMTs using Si-rich SiN/Si3N4 bilayer passivation
,”
IEEE Trans. Electron Devices
69
(
2
),
631
636
(
2022
).
19.
K.
Makiyama
,
S.
Ozaki
,
T.
Ohki
,
N.
Okamoto
,
Y.
Minoura
,
Y.
Niida
,
Y.
Kamada
,
K.
Joshin
,
K.
Watanabe
, and
Y.
Miyamoto
, “
Collapse-free high power InAlGaN/GaN-HEMT with 3 W/mm at 96 GHz
,” in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
Washington, DC
,
2015
), pp.
9.1.1
9.1.4
.
20.
G.
Meneghesso
,
F.
Rampazzo
,
P.
Kordos
,
G.
Verzellesi
, and
E.
Zanoni
, “
Current collapse and high-electric-field reliability of unpassivated GaN/AlGaN/GaN HEMTs
,”
IEEE Trans. Electron Devices
53
(
12
),
2932
2941
(
2006
).
21.
S. C.
Binari
,
K.
Ikossi
,
J. A.
Roussos
,
W.
Kruppa
,
D.
Park
,
H. B.
Dietrich
,
D. D.
Koleske
,
A. E.
Wickenden
, and
R. L.
Henry
, “
Trapping effects and microwave power performance in AlGaN/GaN HEMTs
,”
IEEE Trans. Electron Devices
48
(
3
),
465
471
(
2001
).
22.
C.
Mizue
,
Y.
Hori
,
M.
Miczek
, and
T.
Hashizume
, “
Capacitance–voltage characteristics of Al2O3/AlGaN/GaN structures and state density distribution at Al2O3/AlGaN interface
,”
Jpn. J. Appl. Phys., Part 1
50
,
021001
(
2011
).
23.
W.
Yang
,
J.-S.
Yuan
,
B.
Krishnan
, and
P.
Shea
, “
Characterization of deep and shallow traps in GaN HEMT using multi-frequency C-V measurement and pulse-mode voltage stress
,”
IEEE Trans. Device Mater. Reliab.
19
(
2
),
350
357
(
2019
).
24.
H.
Kim
,
H.
Song
,
C.
Shin
,
K.
Kim
,
W.
Jang
,
H.
Kim
,
S.
Shin
, and
H.
Jeon
, “
Dielectric barrier characteristics of Si-rich silicon nitride films deposited by plasma enhanced atomic layer deposition
,”
J. Vac. Sci. Technol.
35
,
01A101
(
2017
).
25.
J.
Zhao
,
Z.
Lin
,
T. D.
Corrigan
,
Z.
Wang
,
Z.
You
, and
Z.
Wang
, “
Electron mobility related to scattering caused by the strain variation of AlGaN barrier layer in strained AlGaN∕GaN heterostructures
,”
Appl. Phys. Lett.
91
(
17
),
173507
(
2007
).
26.
Y.
Lv
,
Z.
Lin
,
Y.
Zhang
,
L.
Meng
,
C.
Luan
,
Z.
Cao
,
H.
Chen
, and
Z.
Wang
, “
Polarization Coulomb field scattering in AlGaN/AlN/GaN heterostructure field-effect transistors
,”
Appl. Phys. Lett.
98
(
12
),
123512
(
2011
).
27.
P.
Cui
,
J.
Zhang
,
T.-Y.
Yang
,
H.
Chen
,
H.
Zhao
,
G.
Lin
,
L.
Wei
,
J. Q.
Xiao
,
Y.-L.
Chueh
, and
Y.
Zeng
, “
Effects of N2O surface treatment on the electrical properties of the InAlN/GaN high electron mobility transistors
,”
J. Phys. Appl. Phys.
53
(6),
065103
(
2019
).
28.
P.
Cui
,
L.
Wei
,
G.
Lin
,
J.
Zhang
,
H.
Zhao
, and
Y.
Zeng
, “
The effect of negative substrate bias on the electrical characteristics of InAlN/GaN MIS-HEMTs
,”
J. Phys. D: Appl. Phys.
52
(
46
),
465104
(
2019
).
29.
C.
Luan
,
Z.
Lin
,
Y.
Lv
,
J.
Zhao
,
Y.
Wang
,
H.
Chen
, and
Z.
Wang
, “
Theoretical model of the polarization Coulomb field scattering in strained AlGaN/AlN/GaN heterostructure field-effect transistors
,”
J. Appl. Phys.
116
(
4
),
044507
(
2014
).
30.
T.
Fang
,
R.
Wang
,
H.
Xing
,
S.
Rajan
, and
D.
Jena
, “
Effect of optical phonon scattering on the performance of GaN transistors
,”
IEEE Electron Device Lett.
33
(
5
),
709
711
(
2012
).
31.
R.
Vetury
,
N. Q.
Zhang
,
S.
Keller
, and
U. K.
Mishra
, “
The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs
,”
IEEE Trans. Electron Devices
48
(
3
),
560
566
(
2001
).
32.
R.
Quay
,
Gallium Nitride Electronics
, Springer Series in Materials Science (
Springer Berlin
,
Heidelberg
,
2008
), p.
311
.
33.
H.
Zhang
,
E. J.
Miller
, and
E. T.
Yu
, “
Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N∕GaN grown by molecular-beam epitaxy
,”
J. Appl. Phys.
99
(
2
),
023703
(
2006
).
34.
D.
Yan
,
H.
Lu
,
D.
Cao
,
D.
Chen
,
R.
Zhang
, and
Y.
Zheng
, “
On the reverse gate leakage current of AlGaN/GaN high electron mobility transistors
,”
Appl. Phys. Lett.
97
(
15
),
153503
(
2010
).
35.
L.
Zhang
,
B.
Lv
,
X.
Ding
,
F.
Yu
, and
J.
Mo
, “
Study of MoN gate impact on GaN high electron mobility transistor
,”
Electron. Lett.
60
(
10
),
e13236
(
2024
).
You do not currently have access to this content.