The cyclic stability of the elastocaloric effect and the operating parameters (adiabatic cooling value ΔTad, coefficient of performance, operating temperature range) in Ni50.8Ti49.2 and Ni51.5Ti48.5 single crystals oriented along the ⟨001⟩-direction and containing dispersed Ti3Ni4 particles of different sizes were investigated, and the mechanisms of cyclic degradation of the elastocaloric effect were determined. Aged Ni50.8Ti49.2 single crystals containing nanosized Ti3Ni4 particles were shown to possess the optimal combination of operational properties for solid-state cooling. These crystals are characterized by high adiabatic temperature change ΔTad of 16.8–21.4 K over a wide temperature range above 160 K, the highest elastocaloric effect cyclic stability, and high coefficient of performance values up to 27.8. Ni50.8Ti49.2 single crystals with semi-coherent particles (400 nm in size) demonstrate maximum values of ΔTad = 25.3 K; but, they are not feasible for practical applications because of cyclic degradation caused by the formation of residual martensite and dislocations near large particles as well as low coefficient of performance up to 12.7. The use of Ni-rich Ni51.5Ti48.5 crystals can improve the operating characteristics of crystals with semi-coherent Ti3Ni4 particles and achieve high cyclic stability of the elastocaloric effect by strengthening the crystals through an increase in the volume fraction of particles and a decrease in the distance between them.

1.
G. J.
Pataky
,
E.
Ertekin
, and
H.
Sehitoglu
,
Acta Mater.
96
,
420
427
(
2015
).
2.
Y.
Wu
,
E.
Ertekin
, and
H.
Sehitoglu
,
Acta Mater.
135
,
158
176
(
2017
).
3.
S.
Qian
,
Y.
Geng
,
Y.
Wang
,
J.
Ling
,
Y.
Hwang
,
R.
Radermacher
,
I.
Takeuchi
, and
J.
Cui
,
Int. J. Refrig.
64
,
1
19
(
2016
).
4.
J.
Tusek
,
K.
Engelbrecht
,
L.
Mañosa
,
E.
Vives
, and
N.
Pryds
,
Shape Mem. Superelasticity
2
,
317
329
(
2016
).
5.
X.
Wan
,
Y.
Feng
,
X.
Lin
, and
H.
Tan
,
Appl. Phys. Lett.
114
,
221903
(
2019
).
6.
X.
Liang
,
F.
Xiao
,
M.
Jin
,
X.
Jin
,
T.
Fukuda
, and
T.
Kakeshita
,
Scr. Mater.
134
,
42
46
(
2017
).
7.
F.
Xiao
,
X.
Liang
,
H.
Chen
,
Z.
Li
,
Z.
Li
,
X.
Jin
, and
T.
Fukuda
,
Scr. Mater.
168
,
86
90
(
2019
).
8.
A.
Eftifeeva
,
E.
Panchenko
,
E.
Yanushonite
,
I.
Kurlevskaya
,
E.
Timofeeva
,
A.
Tokhmetova
,
N.
Surikov
,
A.
Tagiltsev
, and
Y.
Chumlyakov
,
Mater. Sci. Eng., A
855
,
143855
(
2022
).
9.
S.
Miyazaki
,
Shape Mem. Superelasticity
3
,
279
314
(
2017
).
10.
P.
Sedmák
,
P.
Šittner
,
J.
Pilch
, and
C.
Curf
,
Acta Mater.
94
,
257
270
(
2015
).
11.
M.
Imran
and
X.
Zhang
,
Mater. Des.
195
,
109030
(
2020
).
12.
I.
Aallio
,
T.
Fukuda
, and
T.
Kakeshita
,
J. Alloys Compd.
780
,
930
936
(
2019
).
13.
F.
Xiao
,
T.
Fukuda
, and
T.
Kakeshita
,
Scr. Mater.
124
,
133
137
(
2016
).
14.
J.
Tusek
,
A.
Žerovnik
,
M.
Čebron
,
M.
Brojan
,
B.
Žužek
,
K.
Engelbrecht
, and
A.
Cadelli
,
Acta Mater.
150
,
295
307
(
2018
).
15.
N. Y.
Surikov
,
E. Y.
Panchenko
, and
Y. I.
Chumlyakov
,
Russ. Phys. J.
64
(
9
),
1708
1714
(
2022
).
16.
N. Y.
Surikov
,
E. Y.
Panchenko
, and
Y. I.
Chumlyakov
,
Shape Mem. Superelasticity
8
,
226
234
(
2022
).
17.
E. E.
Timofeeva
,
N.
Yu. Surikov
,
A. I.
Tagiltsev
,
A. S.
Eftifeeva
,
A. A.
Neyman
,
E.
Yu. Panchenko
, and
Y.
Chumlyakov
,
Mater. Sci. Eng., A
796
,
140025
(
2020
).
18.
Y. I.
Chumlyakov
,
I. V.
Kireeva
,
E. Y.
Panchenko
,
E. E.
Timofeeva
,
I. V.
Kretinina
, and
O. A.
Kuts
, “
Physics of thermoelastic martensitic transformation in high-strength single crystals
,” in
Shape Memory Alloys: Properties, Technologies
, edited by
N.
Resnina
,
V.
Rubanik
(
Opportunities, Trans Tech Publications Ltd
,
2015
), pp.
108
174
.
19.
The Handbook of Differential Scanning Calorimetry. Techniques, Instrumentation, Inorganic, Organic and Pharmaceutical Substances
, edited by
J. D.
Menczel
,
J.
Grebowicz
(
Butterworth-Heinemann
,
UK
,
2023
).
20.
J.
Khalil-Allafi
,
G.
Eggeler
,
A.
Dlouhy
,
W. W.
Schmahl
, and
C.
Somsen
,
Mater. Sci. Eng., A
378
,
148
151
(
2004
).
21.
D.
Zhao
,
F.
Xiao
,
Z.
Nie
,
D.
Cong
,
W.
Sun
, and
J.
Liu
,
Scr. Mater.
149
,
6
10
(
2018
).
22.
Z.
Li
,
F.
Xiao
,
H.
Chen
,
R.
Hou
,
X.
Cai
, and
X.
Jin
,
Acta Mater.
211
,
116883
(
2021
).
23.
G.
Pang
,
Z.
He
,
Y.
Lin
,
Y.
Zu
,
X.
Li
,
X.
Fu
,
W.
Zhou
, and
G.
Chen
,
J. Mater. Res. Technol.
30
,
1128
1135
(
2024
).
24.
G.
Zhou
,
Y.
Zhu
,
S.
Yao
, and
Q.
Sun
,
Joule
7
(
9
),
2003
2015
(
2023
).
25.
S.
Li
,
D.
Cong
,
X.
Sun
,
Y.
Zhang
,
Z.
Chen
,
Z.
Nie
,
R.
Li
,
F.
Li
,
Y.
Ren
, and
Y.
Wang
,
Mater. Res. Lett.
7
(
12
),
482
489
(
2019
).
You do not currently have access to this content.