Dynamically stable traveling periodic waves are notoriously difficult to realize experimentally. Manifestations of such waves inherently become unstable in any dispersive medium, whether it be at continuum length scales in fluid mechanics, in electrodynamics, or in nonlinear optics. Here, a simple experimental system is proposed where Stokes waves are emitted from a resonator whose cavity accommodates standing waves of same wavelength that is emitted out. A single characteristic wavelength is found for each driving frequency despite the coexistence of standing and traveling waves, external noise, and potentially parasitic reflections. The system's response is shown to be reliable at very small values of quality factor. A unique utility of this model system is suggested in that such a venting resonator can be used as an inhibitor of modulation instability in dispersive medium where an engineering application demands stable periodic traveling waves. Some parallels are drawn with other unbounded resonators found in society, whereby their leakiness is central to their application, such as the role of air-filled cavity to achieve impedance matching in stringed musical instruments, or energy harvesting from oscillating fluid columns in nature.

1.
M. J.
Lighthill
, “
Contributions to the theory of waves in non-linear dispersive systems
,”
IMA J. Appl. Math.
1
,
269
306
(
1965
).
2.
M.
Faraday
, “
XVII. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces
,”
Philos. Trans. R. Soc. London
121
,
299
340
(
1831
).
3.
S.
Douady
, “
Experimental study of the faraday instability
,”
J. Fluid Mech.
221
,
383
409
(
1990
).
4.
C.
Picard
and
L.
Davoust
, “
Resonance frequencies of meniscus waves as a physical mechanism for a DNA biosensor
,”
Langmuir
23
,
1394
1402
(
2007
).
5.
Y.
Huang
,
C. L. P.
Wolfe
,
J.
Zhang
, and
J.-Q.
Zhong
, “
Streaming controlled by meniscus shape
,”
J. Fluid Mech.
895
,
A1
(
2020
).
6.
A.
Bongarzone
,
F.
Viola
,
S.
Camarri
, and
F.
Gallaire
, “
Subharmonic parametric instability in nearly brimful circular cylinders: A weakly nonlinear analysis
,”
J. Fluid Mech.
947
,
A24
(
2022
).
7.
X.
Shao
,
P.
Wilson
,
J.
Saylor
, and
J.
Bostwick
, “
Surface wave pattern formation in a cylindrical container
,”
J. Fluid Mech.
915
,
A19
(
2021
).
8.
V.
Zakharov
and
L.
Ostrovsky
, “
Modulation instability: The beginning
,”
Physica D
238
,
540
548
(
2009
).
9.
T. B.
Benjamin
and
J. E.
Feir
, “
The disintegration of wave trains on deep water Part 1. Theory
,”
J. Fluid Mech.
27
,
417
430
(
1967
).
10.
T. B.
Benjamin
,
K.
Hasselmann
, and
M. J.
Lighthill
, “
Instability of periodic wavetrains in nonlinear dispersive systems
,”
Proc. R. Soc. London, Ser. A
299
,
59
76
(
1967
).
11.
J. M.
Dudley
,
F.
Dias
,
M.
Erkintalo
, and
G.
Genty
, “
Instabilities, breathers and rogue waves in optics
,”
Nat. Photonics
8
,
755
764
(
2014
).
12.
L.
Zagryadskaya
and
L.
Ostrovskii
, “
Observed self-influence of modulated waves in a nonlinear line
,”
Radiophys. Quantum Electron.
11
,
548
550
(
1968
).
13.
J. F.
Drake
,
P. K.
Kaw
,
Y. C.
Lee
,
G.
Schmid
,
C. S.
Liu
, and
M. N.
Rosenbluth
, “
Parametric instabilities of electromagnetic waves in plasmas
,”
Phys. Fluids
17
,
778
785
(
1974
).
14.
J.
Chung
,
P. A.
Sullivan
, and
T.
Ma
, “
Nonlinear heave dynamics of an air cushion vehicle bag-and-finger skirt
,”
J. Ship Res.
43
,
79
94
(
1999
).
15.
T. V.
Heath
, “
A review of oscillating water columns
,”
Philos. Trans. R. Soc. A
370
,
235
245
(
2012
).
16.
E.
Monsalve
,
A.
Maurel
,
P.
Petitjeans
, and
V.
Pagneux
, “
Perfect absorption of water waves by linear or nonlinear critical coupling
,”
Appl. Phys. Lett.
114
,
013901
(
2019
).
17.
J. A.
As-Salek
and
D. J.
Schwab
, “
High-frequency water level fluctuations in Lake Michigan
,”
J. Waterway, Port, Coastal, Ocean Eng.
130
,
45
53
(
2004
).
18.
A.
Farhadzadeh
, “
A study of Lake Erie seiche and low frequency water level fluctuations in the presence of surface ice
,”
Ocean Eng.
135
,
117
136
(
2017
).
19.
F.
Kara
, “
Hydrodynamic performances of wave energy converter arrays in front of a vertical wall
,”
Ocean Eng.
235
,
109459
(
2021
).
20.
C. C.
Mei
, “
Hydrodynamic principles of wave power extraction
,”
Philos. Trans. R. Soc. A
370
,
208
234
(
2012
).
21.
P. A.
Milewski
,
C. A.
Galeano-Rios
,
A.
Nachbin
, and
J. W. M.
Bush
, “
Faraday pilot-wave dynamics: Modelling and computation
,”
J. Fluid Mech.
778
,
361
388
(
2015
).
22.
J. W.
Bush
, “
Pilot-wave hydrodynamics
,”
Annu. Rev. Fluid Mech.
47
,
269
292
(
2015
).
23.
N.
Fletcher
and
T.
Rossing
,
The Physics of Musical Instruments
, Springer Study Edition (
Springer
,
New York
,
2012
).
24.
U.
Jain
,
A.
Gauthier
, and
D.
Van Der Meer
, “
Total-internal-reflection deflectometry for measuring small deflections of a fluid surface
,”
Exp. Fluids
62
,
235
(
2021
).
25.
S.
Wildeman
, “
Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop
,”
Exp. Fluids
59
,
97
(
2018
).
26.
H.
Lamb
,
Hydrodynamics, Dover Books on Physics
(
Dover Publications
,
1932
).
27.
D.
Hsieh
and
S.
Ho
,
Wave and Stability in Fluids
, G - Reference, Information and Interdisciplinary Subjects Series (
World Scientific
,
1994
).
28.
N. H.
Fletcher
, “
The nonlinear physics of musical instruments
,”
Rep. Prog. Phys.
62
,
723
(
1999
).
29.
H. T.
Nia
,
A. D.
Jain
,
Y.
Liu
,
M.-R.
Alam
,
R.
Barnas
, and
N. C.
Makris
, “
The evolution of air resonance power efficiency in the violin and its ancestors
,”
Proc. R. Soc. A
471
,
20140905
(
2015
).
You do not currently have access to this content.