The interfacial Dzyaloshinskii–Moriya interaction (DMI) can be exploited in magnetic thin films to realize lateral chirally coupled systems, providing a way to couple different sections of a magnetic racetrack and realize interconnected networks of magnetic logic gates. Here, we systematically investigate the interplay between spin–orbit torques, chiral coupling, and the device design in domain wall racetracks. We show that the current-induced domain nucleation process can be tuned between single-domain nucleation and repeated nucleation of alternate domains by changing the orientation of an in-plane patterned magnetic region within an out-of-plane magnetic racetrack. Furthermore, by combining experiments and micromagnetic simulations, we show that the combination of damping-like and field-like spin–orbit torques with DMI results in selective domain wall injection in one of two arms of a Y-shaped device depending on the current density. Such an element constitutes the basis of domain wall based demultiplexer, which is essential for distributing a single input to any one of the multiple outputs in logic circuits. Our results provide input for the design of reliable and multifunctional domain wall circuits based on chirally coupled interfaces.

1.
I.
Dzyaloshinsky
, “
A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics
,”
J. Phys. Chem. Solids
4
,
241
255
(
1958
).
2.
T.
Moriya
, “
Anisotropic superexchange interaction and weak ferromagnetism
,”
Phys. Rev.
120
,
91
98
(
1960
).
3.
A.
Crépieux
and
C.
Lacroix
, “
Dzyaloshinsky-Moriya interactions induced by symmetry breaking at a surface
,”
J. Magn. Magn. Mater.
182
,
341
349
(
1998
).
4.
A.
Thiaville
,
S.
Rohart
,
É.
Jué
,
V.
Cros
, and
A.
Fert
, “
Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films
,”
Europhys. Lett.
100
,
57002
(
2012
).
5.
A.
Kubetzka
,
M.
Bode
,
O.
Pietzsch
, and
R.
Wiesendanger
, “
Spin-polarized scanning tunneling microscopy with antiferromagnetic probe tips
,”
Phys. Rev. Lett.
88
,
057201
(
2002
).
6.
J. P.
Tetienne
,
T.
Hingant
,
J. V.
Kim
,
L.
Herrera Diez
,
J. P.
Adam
,
K.
Garcia
,
J. F.
Roch
,
S.
Rohart
,
A.
Thiaville
,
D.
Ravelosona
, and
V.
Jacques
, “
Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope
,”
Science
344
,
1366
1369
(
2014
).
7.
M. J.
Benitez
,
A.
Hrabec
,
A. P.
Mihai
,
T. A.
Moore
,
G.
Burnell
,
D.
Mcgrouther
,
C. H.
Marrows
, and
S.
McVitie
, “
Magnetic microscopy and topological stability of homochiral Néel domain walls in a Pt/Co/AlOx trilayer
,”
Nat. Commun.
6
(
1
),
8957
(
2015
).
8.
A.
Manchon
,
J.
Železný
,
I. M.
Miron
,
T.
Jungwirth
,
J.
Sinova
,
A.
Thiaville
,
K.
Garello
, and
P.
Gambardella
, “
Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems
,”
Rev. Mod. Phys.
91
,
035004
(
2019
).
9.
I. M.
Miron
,
K.
Garello
,
G.
Gaudin
,
P.-J.
Zermatten
,
M. V.
Costache
,
S.
Auffret
,
S.
Bandiera
,
B.
Rodmacq
,
A.
Schuhl
, and
P.
Gambardella
, “
Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection
,”
Nature
476
,
189
193
(
2011
).
10.
A. V.
Khvalkovskiy
,
V.
Cros
,
D.
Apalkov
,
V.
Nikitin
,
M.
Krounbi
,
K. A.
Zvezdin
,
A.
Anane
,
J.
Grollier
, and
A.
Fert
, “
Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion
,”
Phys. Rev. B
87
,
020402
(
2013
).
11.
K. S.
Ryu
,
L.
Thomas
,
S. H.
Yang
, and
S.
Parkin
, “
Chiral spin torque at magnetic domain walls
,”
Nat. Nanotechnol.
8
,
527
533
(
2013
).
12.
S.
Emori
,
U.
Bauer
,
S.-M.
Ahn
,
E.
Martinez
, and
G. S. D.
Beach
, “
Current-driven dynamics of chiral ferromagnetic domain walls
,”
Nat. Mater.
12
,
611
616
(
2013
).
13.
M.
Baumgartner
,
K.
Garello
,
J.
Mendil
,
C. O.
Avci
,
E.
Grimaldi
,
C.
Murer
,
J.
Feng
,
M.
Gabureac
,
C.
Stamm
,
Y.
Acremann
,
S.
Finizio
,
S.
Wintz
,
J.
Raabe
, and
P.
Gambardella
, “
Spatially and time-resolved magnetization dynamics driven by spin-orbit torques
,”
Nat. Nanotechnol.
12
,
980
986
(
2017
).
14.
R. P.
Del Real
,
V.
Raposo
,
E.
Martinez
, and
M.
Hayashi
, “
Current-induced generation and synchronous motion of highly packed coupled chiral domain walls
,”
Nano Lett.
17
,
1814
1818
(
2017
).
15.
K. J.
Kim
,
S. K.
Kim
,
Y.
Hirata
,
S. H.
Oh
,
T.
Tono
,
D. H.
Kim
,
T.
Okuno
,
W. S.
Ham
,
S.
Kim
,
G.
Go
,
Y.
Tserkovnyak
,
A.
Tsukamoto
,
T.
Moriyama
,
K. J.
Lee
, and
T.
Ono
, “
Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets
,”
Nat. Mater.
16
,
1187
1192
(
2017
).
16.
R.
Blasing
,
A. A.
Khan
,
P. C.
Filippou
,
C.
Garg
,
F.
Hameed
,
J.
Castrillon
, and
S. S. P.
Parkin
, “
Magnetic racetrack memory: From physics to the cusp of applications within a decade
,”
Proc. IEEE
108
,
1303
1321
(
2020
).
17.
K.
Garello
,
I. M.
Miron
,
C. O.
Avci
,
F.
Freimuth
,
Y.
Mokrousov
,
S.
Blügel
,
S.
Auffret
,
O.
Boulle
,
G.
Gaudin
, and
P.
Gambardella
, “
Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures
,”
Nat. Nanotechnol.
8
,
587
593
(
2013
).
18.
J.
Kim
,
J.
Sinha
,
M.
Hayashi
,
M.
Yamanouchi
,
S.
Fukami
,
T.
Suzuki
,
S.
Mitani
, and
H.
Ohno
, “
Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO
,”
Nat. Mater.
12
(
3
),
240
245
(
2013
).
19.
O.
Boulle
,
S.
Rohart
,
L. D.
Buda-Prejbeanu
,
E.
Jué
,
I. M.
Miron
,
S.
Pizzini
,
J.
Vogel
,
G.
Gaudin
, and
A.
Thiaville
, “
Domain wall tilting in the presence of the Dzyaloshinskii-Moriya interaction in out-of-plane magnetized magnetic nanotracks
,”
Phys. Rev. Lett.
111
,
217203
(
2013
).
20.
E.
Martinez
,
S.
Emori
,
N.
Perez
,
L.
Torres
, and
G. S. D.
Beach
, “
Current-driven dynamics of Dzyaloshinskii domain walls in the presence of in-plane fields: Full micromagnetic and one-dimensional analysis
,”
J. Appl. Phys.
115
,
213909
(
2014
).
21.
M.
Baumgartner
and
P.
Gambardella
, “
Asymmetric velocity and tilt angle of domain walls induced by spin-orbit torques
,”
Appl. Phys. Lett.
113
,
242402
(
2018
).
22.
C.
Garg
,
S. H.
Yang
,
T.
Phung
,
A.
Pushp
, and
S. S. P.
Parkin
, “
Dramatic influence of curvature of nanowire on chiral domain wall velocity
,”
Sci. Adv.
3
,
e1602804
(
2017
).
23.
E.
Martinez
,
L.
Torres
,
N.
Perez
,
M. A.
Hernandez
,
V.
Raposo
, and
S.
Moretti
, “
Universal chiral-triggered magnetization switching in confined nanodots
,”
Sci. Rep.
5
(
1
),
10156
(
2015
).
24.
T.
Taniguchi
,
S.
Mitani
, and
M.
Hayashi
, “
Critical current destabilizing perpendicular magnetization by the spin Hall effect
,”
Phys. Rev. B
92
,
024428
(
2015
).
25.
D.
Zhu
and
W.
Zhao
, “
Threshold current density for perpendicular magnetization switching through spin-orbit torque
,”
Phys. Rev. Appl.
13
,
044078
(
2020
).
26.
J.
Yoon
,
S. W.
Lee
,
J. H.
Kwon
,
J. M.
Lee
,
J.
Son
,
X.
Qiu
,
K. J.
Lee
, and
H.
Yang
, “
Anomalous spin-orbit torque switching due to field-like torque–assisted domain wall reflection
,”
Sci. Adv.
3
,
e1603099
(
2017
).
27.
V.
Krizakova
,
M.
Hoffmann
,
V.
Kateel
,
S.
Rao
,
S.
Couet
,
G. S.
Kar
,
K.
Garello
, and
P.
Gambardella
, “
Tailoring the switching efficiency of magnetic tunnel junctions by the fieldlike spin-orbit torque
,”
Phys. Rev. Appl.
18
,
044070
(
2022
).
28.
Z.
Luo
,
T. P.
Dao
,
A.
Hrabec
,
J.
Vijayakumar
,
A.
Kleibert
,
M.
Baumgartner
,
E.
Kirk
,
J.
Cui
,
T.
Savchenko
,
G.
Krishnaswamy
,
L. J.
Heyderman
, and
P.
Gambardella
, “
Chirally coupled nanomagnets
,”
Science
363
,
1435
1439
(
2019
).
29.
A.
Hrabec
,
Z.
Luo
,
L. J.
Heyderman
, and
P.
Gambardella
, “
Synthetic chiral magnets promoted by the Dzyaloshinskii-Moriya interaction
,”
Appl. Phys. Lett.
117
,
130503
(
2020
).
30.
Z.
Liu
,
Z.
Luo
,
S.
Rohart
,
L. J.
Heyderman
,
P.
Gambardella
, and
A.
Hrabec
, “
Engineering of intrinsic chiral torques in magnetic thin films based on the Dzyaloshinskii-Moriya Interaction
,”
Phys. Rev. Appl.
16
,
054049
(
2021
).
31.
Z.
Luo
,
A.
Hrabec
,
T. P.
Dao
,
G.
Sala
,
S.
Finizio
,
J.
Feng
,
S.
Mayr
,
J.
Raabe
,
P.
Gambardella
, and
L. J.
Heyderman
, “
Current-driven magnetic domain-wall logic
,”
Nature
579
,
214
218
(
2020
).
32.
T. P.
Dao
,
M.
Müller
,
Z.
Luo
,
M.
Baumgartner
,
A.
Hrabec
,
L. J.
Heyderman
, and
P.
Gambardella
, “
Chiral domain wall injector driven by spin–orbit torques
,”
Nano Lett.
19
,
5930
5937
(
2019
).
33.
Z.
Luo
,
S.
Schären
,
A.
Hrabec
,
T. P.
Dao
,
G.
Sala
,
S.
Finizio
,
J.
Feng
,
S.
Mayr
,
J.
Raabe
,
P.
Gambardella
, and
L. J.
Heyderman
, “
Field- and current-driven magnetic domain-wall inverter and diode
,”
Phys. Rev. Appl.
15
,
034077
(
2021
).
34.
C.
Yun
,
Z.
Liang
,
A.
Hrabec
,
Z.
Liu
,
M.
Huang
,
L.
Wang
,
Y.
Xiao
,
Y.
Fang
,
W.
Li
,
W.
Yang
,
Y.
Hou
,
J.
Yang
,
L. J.
Heyderman
,
P.
Gambardella
, and
Z.
Luo
, “
Electrically programmable magnetic coupling in an Ising network exploiting solid-state ionic gating
,”
Nat. Commun.
14
(
1
),
6367
(
2023
).
35.
Z.
Zeng
,
Z.
Luo
,
L. J.
Heyderman
,
J.-V.
Kim
, and
A.
Hrabec
, “
Synchronization of chiral vortex nano-oscillators
,”
Appl. Phys. Lett.
118
,
222405
(
2021
).
36.
A.
Manchon
,
C.
Ducruet
,
L.
Lombard
,
S.
Auffret
,
B.
Rodmacq
,
B.
Dieny
,
S.
Pizzini
,
J.
Vogel
,
V.
Uhlíř
,
M.
Hochstrasser
, and
G.
Panaccione
, “
Analysis of oxygen induced anisotropy crossover in Pt/Co/MOx trilayers
,”
J. Appl. Phys.
104
,
043914
(
2008
).
37.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F.
Garcia-Sanchez
, and
B.
Van Waeyenberge
, “
The design and verification of MuMax3
,”
AIP Adv.
4
,
107133
(
2014
).
38.
I.
Gross
,
W.
Akhtar
,
A.
Hrabec
,
J.
Sampaio
,
L. J.
Martínez
,
S.
Chouaieb
,
B. J.
Shields
,
P.
Maletinsky
,
A.
Thiaville
,
S.
Rohart
, and
V.
Jacques
, “
Skyrmion morphology in ultrathin magnetic films
,”
Phys. Rev. Mater.
2
,
024406
(
2018
).
39.
J.
Feng
,
E.
Grimaldi
,
C. O.
Avci
,
M.
Baumgartner
,
G.
Cossu
,
A.
Rossi
, and
P.
Gambardella
, “
Effects of oxidation of top and bottom interfaces on the electric, magnetic, and spin-orbit torque properties of Pt/Co/Al Ox trilayers
,”
Phys. Rev. Appl.
13
,
044029
(
2020
).
40.
B.
Han
,
B.
Zhang
,
S.
Sun
,
B.
Wang
,
Y.
Guo
, and
J.
Cao
, “
The thickness dependence of the field-like spin-orbit torque in heavy metal/CoFeB/MgO heterostructures
,”
J. Appl. Phys.
130
,
213902
(
2021
).
41.
E.
Martinez
,
O.
Alejos
,
M. A.
Hernandez
,
V.
Raposo
,
L.
Sanchez-Tejerina
, and
S.
Moretti
, “
Angular dependence of current-driven chiral walls
,”
Appl. Phys. Express
9
,
063008
(
2016
).
42.
Ó.
Alejos
,
E.
Martínez
,
V.
Raposo
,
L.
Sánchez-Tejerina
, and
M. A.
Hernández-López
, “
Chiral-triggered magnetization switching in patterned media
,”
Appl. Phys. Lett.
110
,
72407
(
2017
).
43.
P.
Zhou
,
L.
Gnoli
,
M. M.
Sadriwala
,
F.
Riente
,
G.
Turvani
,
N.
Hassan
,
X.
Hu
,
M.
Vacca
, and
J. S.
Friedman
, “
Multilayer nanomagnet threshold logic
,”
IEEE Trans. Electron Devices
68
,
1944
1949
(
2021
).
44.
T.
Phung
,
A.
Pushp
,
C.
Rettner
,
B. P.
Hughes
,
S. H.
Yang
, and
S. S. P.
Parkin
, “
Robust sorting of chiral domain walls in a racetrack biplexer
,”
Appl. Phys. Lett.
105
,
222404
(
2014
).
45.
G.
Beaulieu
,
Z.
Luo
,
V.
Raposo
,
L. J.
Heyderman
,
P.
Gambardella
,
E.
Martínez
, and
A.
Hrabec
, “Control of spin–orbit torque-driven domain nucleation through geometry in chirally coupled magnetic tracks,”
Zenodo
, Dataset
You do not currently have access to this content.