SrAl2O4:Eu2+, Dy3+ as an excellent persistent phosphor has been widely applied in many fields. However, the high temperature induced thermal failure has always been a bottleneck problem restricting its long-term development. In this study, a simple pre-annealing method was utilized to improve the thermal damage resistance ability of SrAl2O4:Eu2+, Dy3+ persistent phosphors. After annealing at 900 °C, the afterglow duration time of the phosphor pre-annealed at 400 °C reached 233 min, which was twice longer than that of the phosphor without pre-annealing. An extrinsic vacancy defect migration theory at an elevated temperature was proposed to explain the interesting phenomenon. This study introduced a path to enhance the thermal stability of SrAl2O4:Eu2+, Dy3+ persistent phosphors and provided a thought to design persistent luminescence materials with desired thermal stability.

1.
T.
Matsuzawa
,
Y.
Aoki
,
N.
Takeuchi
, and
Y.
Murayama
,
J. Electrochem. Soc.
143
,
2670
(
1996
).
2.
K.
Van
den Eeckhout
,
P. F.
Smet
, and
D.
Poelman
,
Materials
3
,
2536
(
2010
).
3.
G.
Li
,
Y.
Tian
,
Y.
Zhao
, and
J.
Lin
,
Chem. Soc. Rev.
44
,
8688
(
2015
).
4.
D.
der Heggen
,
J. J.
Joos
,
A.
Feng
,
V.
Fritz
,
T.
Delgado
,
N.
Gartmann
,
B.
Walfort
,
D.
Rytz
,
H.
Hagemann
,
D.
Poelman
,
B.
Viana
, and
P. F.
Smet
,
Adv. Funct. Mater.
32
,
2208809
(
2022
).
5.
S.
Wang
,
Z.
Song
, and
Q.
Liu
,
J. Mater. Chem. C
11
,
48
(
2023
).
6.
W.
Peng
,
H.
Xia
,
Z.
Zhang
,
T.
Qi
,
S.
Kong
,
W.
Dai
, and
Z.
Huang
,
J. Alloys Compd.
753
,
35
(
2018
).
7.
E.
Karacaoglu
and
B.
Karasu
,
Mater. Res. Bull.
48
,
3702
(
2013
).
8.
T.-H.
Kim
,
H.-J.
Hwang
,
J.-H.
Kim
,
K.-T.
Hwang
, and
K.-S.
Han
,
J. Korean Cryst. Growth Cryst. Technol.
26
,
193
(
2016
).
9.
P.
Mingying
,
D.
Ning
,
Q.
Yanbo
,
W.
Baotao
,
W.
Chen
,
C.
Danping
, and
Q.
Jianrong
,
J. Rare Earths
24
,
749
(
2006
).
10.
S.
Yoon
,
J.
Bierwagen
,
M.
Trottmann
,
B.
Walfort
,
N.
Gartmann
,
A.
Weidenkaff
,
H.-R.
Hagemann
, and
S.
Pokrant
,
J. Lumin.
167
,
126
(
2015
).
11.
J.
Zhao
,
L.
Lei
,
R.
Ye
,
J.
Zhang
,
X.
Zhang
, and
S.
Xu
,
J. Adv. Ceram.
11
(
6
),
974
(
2022
).
12.
J.-H.
Kim
,
S.-Y.
Lee
,
T.-H.
Kim
,
K.-S.
Han
,
K.-T.
Hwang
, and
W.-S.
Cho
,
J. Korean Ceram. Soc.
51
,
618
(
2014
).
13.
T.
Cai
,
S.
Guo
,
Y.
Li
,
D.
Peng
,
X.
Zhao
,
W.
Wang
, and
Y.
Liu
,
Sens. Actuators, A
315
,
112246
(
2020
).
14.
L.
Sharma
and
P. D.
Sahare
,
RSC Adv.
13
,
25579
(
2023
).
15.
S. N.
Ogugua
,
C.
Abram
,
B.
Fond
,
R. E.
Kroon
,
F.
Beyrau
, and
H. C.
Swart
,
Dalton Trans.
53
,
4551
(
2024
).
16.
K. A.
Gedekar
,
S. P.
Wankhede
,
S. V.
Moharil
, and
R. M.
Belekar
,
J. Adv. Ceram.
6
(
4
),
341
(
2017
).
17.
V.
Vitola
,
D.
Millers
,
I.
Bite
,
K.
Smits
, and
A.
Spustaka
,
Mater. Sci. Technol.
35
,
1661
(
2019
).
18.
X.
Xu
,
X.
Yu
,
D.
Zhou
, and
J.
Qiu
,
J. Solid State Chem.
206
,
66
(
2013
).
20.
R. E.
Rojas-Hernández
,
F.
Rubio-Marcos
,
Marcos
,
M. Á.
Rodrı́guez
,
A.
Serrano
,
Á.
Muñoz-Noval
, and
J. F.
Fernández
,
Mater. Des.
108
,
354
(
2016
).
21.
S.
Xu
,
J.
Fu
,
X.
Liu
,
M.
Yuan
,
C.
Zhang
,
H.
Wang
,
G.
Liu
, and
S.
Cui
,
Ceram. Int.
49
,
5228
(
2023
).
22.
Y.-H.
Ma
,
X.
Gao
,
W.-T.
Zhang
,
Z.-R.
Yang
,
Z.
Zhao
, and
C.
Qu
,
Rare Met.
43
,
736
(
2024
).
23.
D.
Kim
,
H.-E.
Kim
, and
C.-H.
Kim
,
PLoS One
11
,
e0162920
(
2016
).
24.
F.
Wu
,
J.
Wang
,
X.
Jing
,
C.
Yan
,
J.
Lin
, and
F.
Liao
,
J. Rare Earths
26
,
26
(
2008
).
25.
Z.
Tang
,
D.
Wang
,
W. U.
Khan
,
S.
Du
,
X.
Wang
, and
Y.
Wang
,
J. Mater. Chem. C
4
,
5307
(
2016
).
26.
E.
Shafia
,
A.
Aghaei
,
A.
Davarpanah
,
M.
Bodaghi
,
M.
Tahriri
, and
S. H.
Alavi
,
Trans. Indian Ceram. Soc.
70
,
71
(
2011
).
27.
O.
Hai
,
X.
Wu
,
Q.
Zhang
,
Z.
Zhang
, and
Z.
Zhang
,
J. Alloys Compd.
779
,
892
(
2019
).
28.
K.
Asami
,
J.
Ueda
, and
S.
Tanabe
,
J. Lumin.
207
,
246
(
2019
).
29.
V.
Chernov
,
P.
Salas-Castillo
,
L. A.
Díaz-Torres
,
N. J.
Zúñiga-Rivera
,
R.
Ruiz-Torres
,
R.
Meléndrez
, and
M.
Barboza-Flores
,
Opt. Mater.
92
,
46
(
2019
).
30.
B.
Zhang
,
Q.
Liu
,
W.
Yan
,
Y.
Chen
,
A.
Shen
, and
H.
Zhang
,
J. Mater. Sci.
52
,
8188
(
2017
).
31.
R. E.
Rojas-Hernandez
,
M. A.
Rodriguez
,
F.
Rubio-Marcos
,
A.
Serrano
, and
J. F.
Fernandez
,
J. Mater. Chem. C
3
,
1268
(
2015
).
32.
Q.
Xiao
,
L.
Xiao
,
Y.
Liu
,
X.
Chen
, and
Y.
Li
,
J. Phys. Chem. Solids
71
,
1026
(
2010
).
33.
H.
Terraschke
,
M.
Suta
,
M.
Adlung
,
S.
Mammadova
,
N.
Musayeva
,
R.
Jabbarov
,
M.
Nazarov
, and
C.
Wickleder
,
J. Spectrosc.
2015
,
541958
.
34.
E. M.
Rodríguez
,
G.
López-Peña
,
E.
Montes
,
G.
Lifante
,
J. G.
Solé
,
D.
Jaque
,
L. A.
Diaz-Torres
, and
P.
Salas
,
Appl. Phys. Lett.
111
,
81901
(
2017
).
35.
N.
Yu
,
F.
Liu
,
X.
Li
, and
Z.
Pan
,
Appl. Phys. Lett.
95
,
231110
(
2009
).
36.
B.
Qu
,
C.
Zhu
,
M.
Liu
,
W.
Cheng
,
R.
Zhou
, and
L.
Wang
,
J. Lumin.
263
,
120106
(
2023
).
37.
T.
Aitasalo
,
J.
Hölsä
,
H.
Jungner
,
J.-C.
Krupa
,
M.
Lastusaari
,
J.
Legendziewicz
, and
J.
Niittykoski
,
Radiat. Meas.
38
,
727
(
2004
).
38.
F.
Clabau
,
X.
Rocquefelte
,
S.
Jobic
,
P.
Deniard
,
M. H.
Whangbo
,
A.
Garcia
, and
T.
Le Mercier
,
Chem. Mater.
17
,
3904
(
2005
).
39.
P.
Dorenbos
,
J. Electrochem. Soc.
152
,
H107
(
2005
).
40.
D.
Dutczak
,
T.
Jüstel
,
C.
Ronda
, and
A.
Meijerink
,
Phys. Chem. Chem. Phys.
17
,
15236
(
2015
).
41.
J. R. N.
Gnidakouong
and
G. J.
Yun
,
Ceram. Int.
45
,
1794
(
2019
).
42.
C.
Pan
,
J.-C.
Zhang
,
M.
Zhang
,
X.
Yan
,
Y.-Z.
Long
, and
X.
Wang
,
Appl. Phys. Lett.
110
,
233904
(
2017
).
43.
Y.
Lu
,
L.
Chen
,
Q.
Zhang
,
B. A.
Goodman
,
W.
Deng
,
D.
Xiong
, and
S.
Xu
,
J. Lumin.
253
,
119472
(
2023
).
44.
J.
Chen
,
F.
Gu
, and
C.
Li
,
Cryst. Growth Des.
8
,
3175
(
2008
).
45.
W. D.
Callister
,
Fundamentals of Materials Science and Engineering: An Interactive E. Text
(
Wiley
,
2000
).
You do not currently have access to this content.