High indium composition InGaN is a promising material for thermoelectric harvesting application, which can work at high temperature and extreme environments. Due to the strong composition segregation, high indium composition InGaN material usually forms localized quantum dots, which advantageously enhances the thermoelectric (TE) properties. In this research, the two-dimensional InGaN/GaN superlattices (SLs) structured TE material with high In composition of 35% quantum dots is first grown and characterized. Using open-circuit voltage measurement, the Seebeck coefficient (S) exhibits a high value of −571 μV/K. Analysis indicates this relatively high S value is related to the increased density of electron states near the Fermi level induced by the reduced dimensionality, resulting in a power factor of 11.83 × 10−4W/m·K2. The dense boundary between InGaN quantum dots also increases the interface phonon scattering, thereby suppressing the heat transportation and leading to a low thermal conductivity (k) value of 19.9 W/m·K. As a result, a TE figure of merit (ZT) value of 0.025 is demonstrated in the sample. This work first clarifies the impact of embedded quantum dots in InGaN/GaN SLs structure on TE properties. It is very conductive for the design and fabrication of low-dimensional GaN based TE device.

1.
N.
Islam
,
M. F. P.
Mohamed
,
M. F. A. J.
Khan
,
S.
Falina
,
H.
Kawarada
, and
M.
Syamsul
, “
Reliability, applications and challenges of GaN HEMT technology for modern power devices: A review
,”
Crystals
12
,
1581
(
2022
).
2.
X.
Shao
,
Z.
Zhang
,
P.
Song
,
Y.
Feng
, and
X.
Wang
, “
A review of energy efficiency evaluation metrics for data centers
,”
Energy Build.
271
,
112308
(
2022
).
3.
R.
Sun
,
J.
Lai
,
W.
Chen
, and
B.
Zhang
, “
GaN power integration for high frequency and high efficiency power applications: A review
,”
IEEE Access
8
,
15529
(
2020
).
4.
G.
Wang
,
Z.
Lu
,
Y.
Li
,
L.
Li
,
H.
Ji
,
A.
Feteira
,
D.
Zhou
,
D.
Wang
,
S.
Zhang
, and
I. M.
Reaney
, “
Electroceramics for high-energy density capacitors: Current status and future perspectives
,”
Chem. Rev.
121
,
6124
(
2021
).
5.
B.-L.
Huang
and
M.
Kaviany
, “
Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride
,”
Phys. Rev. B
77
,
125209
(
2008
).
6.
S. M.
Lee
,
D. G.
Cahill
, and
R.
Venkatasubramanian
, “
Thermal conductivity of Si-Ge superlattices
,”
Appl. Phys. Lett.
70
,
2957
(
1997
).
7.
D.
Wu
,
L.-D.
Zhao
,
X.
Tong
,
W.
Li
,
L.
Wu
,
Q.
Tan
,
Y.
Pei
,
L.
Huang
,
J.-F.
Li
,
Y.
Zhu
,
M. G.
Kanatzidis
, and
J.
He
, “
Superior thermoelectric performance in PbTe-PbS pseudo-binary: Extremely low thermal conductivity and modulated carrier concentration
,”
Energy Environ. Sci.
8
,
2056
(
2015
).
8.
Y.
Pei
,
X.
Shi
,
A.
LaLonde
,
H.
Wang
,
L.
Chen
, and
G. J.
Snyder
, “
Convergence of electronic bands for high performance bulk thermoelectrics
,”
Nature
473
,
66
(
2011
).
9.
W. L.
Liu
and
A. A.
Balandin
, “
Thermoelectric effects in wurtzite GaN and AlxGa1-xN alloys
,”
J. Appl. Phys.
97
,
123705
(
2005
).
10.
B. N.
Pantha
,
R.
Dahal
,
J.
Li
,
J. Y.
Lin
,
H. X.
Jiang
, and
G.
Pomrenke
, “
Thermoelectric properties of InxGa1-xN alloys
,”
Appl. Phys. Lett.
92
,
042112
(
2008
).
11.
A.
Sztein
,
H.
Ohta
,
J. E.
Bowers
,
S. P.
DenBaars
, and
S.
Nakamura
, “
High temperature thermoelectric properties of optimized InGaN
,”
J. Appl. Phys.
110
,
123709
(
2011
).
12.
H.
Tong
,
H.
Zhao
,
V. A.
Handara
,
J. A.
Herbsommer
, and
N.
Tansu
, “
Analysis of thermoelectric characteristics of AlGaN and InGaN semiconductors
,”
Proc. SPIE
7211
,
721103
(
2009
).
13.
F.
Alreshidi
,
L.-R.
Chen
,
M.
Najmi
,
B.
Xin
,
H.
Alamoudi
,
G.
Melinte
,
N.
Wehbe
,
D.
Iida
,
K.
Ohkawa
,
T.-C.
Lu
, and
I. S.
Roqan
, “
Enhanced efficiency InGaN/GaN multiple quantum well structures via strain engineering and ultrathin subwells formed by V-pit sidewalls
,”
ACS Appl. Opt. Mater.
2
,
220
(
2024
).
14.
I. A.
Ajia
,
P. R.
Edwards
,
Y.
Pak
,
E.
Belekov
,
M. A.
Roldan
,
N. N.
Wei
,
Z. Q.
Liu
,
R. W.
Martin
, and
I. S.
Roqan
, “
Generated carrier dynamics in V-pit-enhanced InGaN/GaN light-emitting diode
,”
ACS Photonics
5
,
820
(
2018
).
15.
S. S.
Sahu
and
B. K.
Sahoo
, “
Thermal boundary resistance enhancement through interfacial polarization electric field induced in GaN/InxGa1-xN superlattice
,”
Superlattices Microstruct.
159
,
107035
(
2021
).
16.
X. W.
Wang
,
H.
Lee
,
Y. C.
Lan
,
G. H.
Zhu
,
G.
Joshi
,
D. Z.
Wang
,
J.
Yang
,
A. J.
Muto
,
M. Y.
Tang
,
J.
Klatsky
,
S.
Song
,
M. S.
Dresselhaus
,
G.
Chen
, and
Z. F.
Ren
, “
Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy
,”
Appl. Phys. Lett.
93
,
193121
(
2008
).
17.
Y.
Xiao
and
L.-D.
Zhao
, “
Seeking new, highly effective thermoelectrics
,”
Science
367
,
1196
(
2020
).
18.
A.
Sztein
,
J. E.
Bowers
,
S. P.
DenBaars
, and
S.
Nakamura
, “
Polarization field engineering of GaN/AlN/AlGaN superlattices for enhanced thermoelectric properties
,”
Appl. Phys. Lett.
104
,
042106
(
2014
).
19.
Y.
Yan
,
S.
Zhang
,
Q.
Ma
,
Z.
Wang
,
T.
Feng
,
Q.
Chen
,
B.
Shi
,
F.
Sun
,
M.
Liang
,
J.
Wang
,
X.
Yi
,
J.
Li
, and
Z.
Liu
, “
High power efficiency nitrides thermoelectric device
,”
Nano Energy
101
,
107568
(
2022
).
20.
A.
Pansari
and
B. K.
Sahoo
, “
Interfacial electric field and cross-plane thermal conductivity of GaN/InxGa1-xN superlattices (x = 0.1 and 0.3)
,”
Appl. Phys. A
127
,
258
(
2021
).
21.
C.-W.
Wu
and
Y.-R.
Wu
, “
Thermoelectric characteristic of the rough InN/GaN core-shell nanowires
,”
J. Appl. Phys.
116
,
103707
(
2014
).
22.
H.
Li
,
P.
Li
,
J.
Kang
,
J.
Ding
,
J.
Ma
,
Y.
Zhang
,
X.
Yi
, and
G.
Wang
, “
Broadband full-color monolithic InGaN light-emitting diodes by self-assembled InGaN quantum dots
,”
Sci. Rep.
6
,
35217
(
2016
).
23.
S. S.
Sahu
and
B. K.
Sahoo
, “
Role of interfacial electric field in thermal conductivity of indium-rich GaN/InxGa1−xN/GaN superlattices (x ≥ 0.7)
,”
Indian J. Phys.
96
,
2023
(
2022
).
24.
P.
Li
,
H.
Li
,
Y.
Yao
,
N.
Lim
,
M.
Wong
,
M.
Iza
,
M. J.
Gordon
,
J. S.
Speck
,
S.
Nakamura
, and
S. P.
DenBaars
, “
Significant quantum efficiency enhancement of InGaN red micro-light-emitting diodes with a peak external quantum efficiency of up to 6%
,”
ACS Photonics
10
,
1899
(
2023
).
25.
K.
Park
and
C.
Bayram
, “
Impact of dislocations on the thermal conductivity of gallium nitride studied by time-domain thermoreflectance
,”
J. Appl. Phys.
126
,
185103
(
2019
).
26.
M. E.
Vickers
,
M. J.
Kappers
,
T. M.
Smeeton
,
E. J.
Thrush
,
J. S.
Barnard
, and
C. J.
Humphreys
, “
Determination of the indium content and layer thicknesses in InGaN/GaN quantum wells by x-ray scattering
,”
J. Appl. Phys.
94
,
1565
(
2003
).
27.
J.
Leitner
,
A.
Strejc
,
D.
Sedmidubsky
, and
K.
Ruzicka
, “
High temperature enthalpy and heat capacity of GaN
,”
Thermochim. Acta
401
,
169
(
2003
).
28.
P.
Chakraborty
,
Y. D.
Liu
,
T. F.
Ma
,
X. X.
Guo
,
L.
Cao
,
R.
Hu
, and
Y.
Wang
, “
Quenching thermal transport in aperiodic superlattices: A molecular dynamics and machine learning study
,”
ACS Appl. Mater. Interfaces
12
,
8795
(
2020
).
29.
Y.
Liu
,
R.
Hu
,
Y.
Wang
,
J.
Ma
,
Z.
Yang
, and
X.
Luo
, “
Big-data-accelerated aperiodic Si/Ge superlattice prediction for quenching thermal conduction via pattern analysis
,”
Energy
3
,
100046
(
2021
).
30.
Y.
Wang
,
C.
Gu
, and
X.
Ruan
, “
Optimization of the random multilayer structure to break the random-alloy limit of thermal conductivity
,”
Appl. Phys. Lett.
106
,
073104
(
2015
).
You do not currently have access to this content.