The control of the speed of terahertz waves is always a challenge since the bandgap of most optical materials is much larger beyond meV with subtle nonlinear susceptibility. Moiré metasurfaces are shown to exhibit wide tunable optical properties and extraordinary physical phenomena at specific commensurate angles. These can be achieved by a careful design of the metasurface to manipulate terahertz slow light. Herein, we demonstrate a triple layer Moiré metasurface with a distinct electromagnetically induced transparency (EIT) phenomenon at commensurate angles. The proposed metasurface is composed of an intrinsic square lattice embedded into another Moiré photonic superlattice made of twisted square lattice at commensurate angles of 10.39° and 7.63°. The coupling between adjacent meta-atoms on the combined metasurface leads to destructive interference of dual trapped lattice modes, which results in a transparency window at the terahertz band. A maximum group delay of 9.76 ps is found at the transparent window of 0.84 THz when the commensurate angle is 10.39°. When the commensurate angle reduces to 7.63°, the transparency window shifts to 0.57 THz with a 5.96 ps group delay. The coupled Lorentz oscillator model indicates that the nonlinear optical susceptibility at transparency windows is above zero. Our results create an approach to tune the EIT as well as slow light in the terahertz band. Our device can have potential applications in terahertz signal processing and storage.

1.
L.
Du
,
M. R.
Molas
,
Z.
Huang
,
G.
Zhang
,
F.
Wang
, and
Z.
Sun
, “
Moiré photonics and optoelectronics
,”
Science
379
(
6639
),
eadg0014
(
2023
).
2.
X.-R.
Mao
,
Z.-K.
Shao
,
H.-Y.
Luan
,
S.-L.
Wang
, and
R.-M.
Ma
, “
Magic-angle lasers in nanostructured moiré superlattice
,”
Nat. Nanotechnol.
16
(
10
),
1099
1105
(
2021
).
3.
D. N.
Basov
,
M. M.
Fogler
, and
F. J.
García De Abajo
, “
Polaritons in van der Waals materials
,”
Science
354
(
6309
),
aag1992
(
2016
).
4.
L.
Zhang
,
F.
Wu
,
S.
Hou
,
Z.
Zhang
,
Y.-H.
Chou
,
K.
Watanabe
,
T.
Taniguchi
,
S. R.
Forrest
, and
H.
Deng
, “
Van der Waals heterostructure polaritons with moiré-induced nonlinearity
,”
Nature
591
(
7848
),
61
65
(
2021
).
5.
K.
Tran
,
G.
Moody
,
F.
Wu
,
X.
Lu
,
J.
Choi
,
K.
Kim
,
A.
Rai
,
D. A.
Sanchez
,
J.
Quan
,
A.
Singh
,
J.
Embley
,
A.
Zepeda
,
M.
Campbell
,
T.
Autry
,
T.
Taniguchi
,
K.
Watanabe
,
N.
Lu
,
S. K.
Banerjee
,
K. L.
Silverman
,
S.
Kim
,
E.
Tutuc
,
L.
Yang
,
A. H.
MacDonald
, and
X.
Li
, “
Evidence for moiré excitons in van der Waals heterostructures
,”
Nature
567
(
7746
),
71
75
(
2019
).
6.
C.
Jin
,
E. C.
Regan
,
A.
Yan
,
M.
Iqbal Bakti Utama
,
D.
Wang
,
S.
Zhao
,
Y.
Qin
,
S.
Yang
,
Z.
Zheng
,
S.
Shi
,
K.
Watanabe
,
T.
Taniguchi
,
S.
Tongay
,
A.
Zettl
, and
F.
Wang
, “
Observation of moiré excitons in WSe2/WS2 heterostructure superlattices
,”
Nature
567
(
7746
),
76
80
(
2019
).
7.
E.
Liu
,
E.
Barré
,
J.
Van Baren
,
M.
Wilson
,
T.
Taniguchi
,
K.
Watanabe
,
Y.-T.
Cui
,
N. M.
Gabor
,
T. F.
Heinz
,
Y.-C.
Chang
, and
C. H.
Lui
, “
Signatures of moiré trions in WSe2/MoSe2 heterobilayers
,”
Nature
594
(
7861
),
46
50
(
2021
).
8.
K. L.
Seyler
,
P.
Rivera
,
H.
Yu
,
N. P.
Wilson
,
E. L.
Ray
,
D. G.
Mandrus
,
J.
Yan
,
W.
Yao
, and
X.
Xu
, “
Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers
,”
Nature
567
(
7746
),
66
70
(
2019
).
9.
E. M.
Alexeev
,
D. A.
Ruiz-Tijerina
,
M.
Danovich
,
M. J.
Hamer
,
D. J.
Terry
,
P. K.
Nayak
,
S.
Ahn
,
S.
Pak
,
J.
Lee
,
J. I.
Sohn
,
M. R.
Molas
,
M.
Koperski
,
K.
Watanabe
,
T.
Taniguchi
,
K. S.
Novoselov
,
R. V.
Gorbachev
,
H. S.
Shin
,
V. I.
Fal'ko
, and
A. I.
Tartakovskii
, “
Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures
,”
Nature
567
(
7746
),
81
86
(
2019
).
10.
Y.
Tang
,
J.
Gu
,
S.
Liu
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Hone
,
K. F.
Mak
, and
J.
Shan
, “
Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect
,”
Nat. Nanotechnol.
16
(
1
),
52
57
(
2021
).
11.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
, “
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
,”
Nat. Nanotechnol.
7
(
11
),
699
712
(
2012
).
12.
C.
Ma
,
S.
Yuan
,
P.
Cheung
,
K.
Watanabe
,
T.
Taniguchi
,
F.
Zhang
, and
F.
Xia
, “
Intelligent infrared sensing enabled by tunable moiré quantum geometry
,”
Nature
604
(
7905
),
266
272
(
2022
).
13.
G.
Chen
,
A. L.
Sharpe
,
P.
Gallagher
,
I. T.
Rosen
,
E. J.
Fox
,
L.
Jiang
,
B.
Lyu
,
H.
Li
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Jung
,
Z.
Shi
,
D.
Goldhaber-Gordon
,
Y.
Zhang
, and
F.
Wang
, “
Signatures of tunable superconductivity in a trilayer graphene moiré superlattice
,”
Nature
572
(
7768
),
215
219
(
2019
).
14.
J.
Yang
,
G.
Chen
,
T.
Han
,
Q.
Zhang
,
Y.-H.
Zhang
,
L.
Jiang
,
B.
Lyu
,
H.
Li
,
K.
Watanabe
,
T.
Taniguchi
,
Z.
Shi
,
T.
Senthil
,
Y.
Zhang
,
F.
Wang
, and
L.
Ju
, “
Spectroscopy signatures of electron correlations in a trilayer graphene/hBN moiré superlattice
,”
Science
375
(
6586
),
1295
1299
(
2022
).
15.
B.
Deng
,
C.
Ma
,
Q.
Wang
,
S.
Yuan
,
K.
Watanabe
,
T.
Taniguchi
,
F.
Zhang
, and
F.
Xia
, “
Strong mid-infrared photoresponse in small-twist-angle bilayer graphene
,”
Nat. Photonics
14
(
9
),
549
553
(
2020
).
16.
G.
Hu
,
A.
Krasnok
,
Y.
Mazor
,
C.-W.
Qiu
, and
A.
Alù
, “
Moiré hyperbolic metasurfaces
,”
Nano Lett.
20
(
5
),
3217
3224
(
2020
).
17.
Z.
Wu
and
Y.
Zheng
, “
Moiré metamaterials and metasurfaces
,”
Adv. Opt. Mater.
6
(
3
),
1701057
(
2018
).
18.
S.
Liu
,
S.
Ma
,
R.
Shao
,
L.
Zhang
,
T.
Yan
,
Q.
Ma
,
S.
Zhang
, and
T. J.
Cui
, “
Moiré metasurfaces for dynamic beamforming
,”
Sci. Adv.
8
(
33
),
eabo1511
(
2022
).
19.
H.
Li
,
D.
Wang
,
G.
Xu
,
K.
Liu
,
T.
Zhang
,
J.
Li
,
G.
Tao
,
S.
Yang
,
Y.
Lu
,
R.
Hu
,
S.
Lin
,
Y.
Li
, and
C.-W.
Qiu
, “
Twisted moiré conductive thermal metasurface
,”
Nat. Commun.
15
(
1
),
2169
(
2024
).
20.
E.
Karademir
,
S.
Balci
,
C.
Kocabas
, and
A.
Aydinli
, “
Lasing in a slow plasmon moiré cavity
,”
ACS Photonics
2
(
7
),
805
809
(
2015
).
21.
P.
Wang
,
Y.
Zheng
,
X.
Chen
,
C.
Huang
,
Y. V.
Kartashov
,
L.
Torner
,
V. V.
Konotop
, and
F.
Ye
, “
Localization and delocalization of light in photonic moiré lattices
,”
Nature
577
(
7788
),
42
46
(
2020
).
22.
L.
Huang
,
W.
Zhang
, and
X.
Zhang
, “
Moiré quasibound states in the continuum
,”
Phys. Rev. Lett.
128
(
25
),
253901
(
2022
).
23.
A.
Kocabas
,
S. S.
Senlik
, and
A.
Aydinli
, “
Slowing down surface plasmons on a Moiré surface
,”
Phys. Rev. Lett.
102
(
6
),
063901
(
2009
).
24.
A. H.
Safavi-Naeini
,
T.
Alegre
,
J.
Chan
,
M.
Eichenfield
,
M.
Winger
,
Q.
Lin
,
J. T.
Hill
,
D. E.
Chang
, and
O.
Painter
, “
Electromagnetically induced transparency and slow light with optomechanics
,”
Nature
472
,
69
73
(
2011
).
25.
M.
Manjappa
,
S.
Chiam
,
L.
Cong
,
A. A.
Bettiol
,
W.
Zhang
, and
R.
Singh
, “
Tailoring the slow light behavior in terahertz metasurfaces
,”
Appl. Phys. Lett.
106
,
181101
(
2015
).
26.
R.
Singh
,
I. A. I.
Al-Naib
,
Y.
Yang
,
D. R.
Chowdhury
,
W.
Cao
,
C.
Rockstuhl
,
T.
Ozaki
,
R.
Morandotti
, and
W.
Zhang
, “
Observing metamaterial induced transparency in individual Fano resonators with broken symmetry
,”
Appl. Phys. Lett.
99
,
201107
(
2011
).
27.
Z.
Zhao
,
H.
Zhao
,
R. T.
Ako
,
S.
Nickl
, and
S.
Sriram
, “
Polarization-insensitive terahertz spoof localized surface plasmon-induced transparency based on lattice rotational symmetry
,”
Appl. Phys. Lett.
117
,
011105
(
2020
).
28.
Z.
Zhao
,
Z.
Gu
,
R. T.
Ako
,
H.
Zhao
, and
S.
Sriram
, “
Coherently controllable terahertz plasmon-induced transparency using a coupled Fano-Lorentzian metasurface
,”
Opt. Express
28
(
10
),
15573
15586
(
2020
).
29.
Z.
Zhao
,
H.
Zhao
,
R. T.
Ako
,
J.
Zhang
,
H.
Zhao
, and
S.
Sriram
, “
Demonstration of group delay above 40 ps at terahertz plasmon-induced transparency windows
,”
Opt. Express
27
,
26459
26470
(
2019
).
30.
Z.
Zhao
,
X.
Zheng
,
W.
Peng
,
J.
Zhang
,
H.
Zhao
,
Z.
Luo
, and
W.
Shi
, “
Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule
,”
Opt. Express
25
(
20
),
24410
24424
(
2017
).
31.
C.
Huang
,
F.
Ye
,
X.
Chen
,
Y. V.
Kartashov
,
V. V.
Konotop
, and
L.
Torner
, “
Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials
,”
Sci. Rep.
6
(
1
),
32546
(
2016
).
32.
H.
Tang
,
B.
Lou
,
F.
Du
,
M.
Zhang
,
X.
Ni
,
W.
Xu
,
R.
Jin
,
S.
Fan
, and
E.
Mazur
, “
Experimental probe of twist angle-dependent band structure of on-chip optical bilayer photonic crystal
,”
Sci. Adv.
9
(
28
),
eadh8498
(
2023
).
33.
J.-H.
Han
,
I.
Kim
,
J.-W.
Ryu
,
J.
Kim
,
J.-H.
Cho
,
G.-S.
Yim
,
H.-S.
Park
,
B.
Min
, and
M.
Choi
, “
Rotationally reconfigurable metamaterials based on moiré phenomenon
,”
Opt. Express
23
(
13
),
17443
(
2015
).
34.
L.
Wang
,
Z.
Zhao
,
R. T.
Ako
, and
S.
Sriram
, “
Terahertz superlattice modes in moiré metasurface composed of twisted square and hexagonal lattices
,”
Appl. Phys. Express
14
(
6
),
062003
(
2021
).
35.
R.
Yahiaoui
,
M.
Manjappa
,
Y. K.
Srivastava
, and
R.
Singh
, “
Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices
,”
Appl. Phys. Lett.
111
(
2
),
021101
(
2017
).
36.
F.-Y.
Meng
,
Q.
Wu
,
D.
Erni
,
K.
Wu
, and
J.-C.
Lee
, “
Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor
,”
IEEE Trans. Microwave Theory Tech.
60
(
10
),
3013
3022
(
2012
).
You do not currently have access to this content.