GaN-based ultraviolet light emitting diodes (UV LEDs) have attracted considerable attention in recent years and are required in various applications such as healthcare, light illumination, and optical communication. However, the limited UV transparency of the electrodes like indium-doped tin oxide has hindered the external quantum efficiency of current UV LEDs. In this work, we present the growth of UV-transparent Ta-doped SnO2 (TTO) thin films on GaN as a promising UV-transparent electrode for LEDs. TTO thin films with a thickness of 200 nm exhibit optical transmission exceeding 80% at the wavelength of 300 nm, with a low resistivity of 2.5 × 10−4 Ω·cm and a low contact resistance of 1.7 × 10−2 Ω cm2 to n-type GaN. High-resolution x-ray photoemission spectra were employed to reveal insight into the electronic structure of TTO and the interfacial band alignment of TTO/GaN heterojunction. The wide optical bandgap (∼4.6 eV) and high UV transparency of TTO films stem from a significant Burstein–Moss shift due to degenerate doping, giving rise to metal-like characteristics and a small barrier height at the interface of TTO/GaN. These findings imply the origin of low contact resistivity of TTO to n-type GaN and may be applicable to the development of UV-transparent electrodes of optoelectronic devices.

1.
Y.
Kebbi
,
A. I.
Muhammad
,
A. S.
Sant'Ana
,
L.
do Prado-Silva
,
D.
Liu
, and
T.
Ding
,
Compr. Rev. Food Sci. Food Saf.
19
(
6
),
3501
3527
(
2020
).
2.
A.
Kheyrandish
,
M.
Mohseni
, and
F.
Taghipour
,
Water Res.
122
,
570
579
(
2017
).
3.
H.
Jia
,
L.
Guo
,
W.
Wang
, and
H.
Chen
,
Adv. Mater.
21
(
45
),
4641
4646
(
2009
).
4.
Y.
Nagasawa
and
A.
Hirano
,
Appl. Sci.
8
(
8
),
1264
(
2018
).
5.
H.
Hirayama
,
N.
Maeda
,
S.
Fujikawa
,
S.
Toyoda
, and
N.
Kamata
,
Jpn. J. Appl. Phys.
53
(
10
),
100209
(
2014
).
6.
R. K.
Mondal
,
S.
Adhikari
,
V.
Chatterjee
, and
S.
Pal
,
Mater. Res. Bull.
140
,
111258
(
2021
).
7.
H. D.
Kim
,
H. M.
An
,
K. H.
Kim
,
S. J.
Kim
,
C. S.
Kim
,
J.
Cho
,
E. F.
Schubert
, and
T. G.
Kim
,
Adv. Funct. Mater.
24
(
11
),
1575
1581
(
2014
).
8.
J.
Shi
,
J.
Zhang
,
L.
Yang
,
M.
Qu
,
D. C.
Qi
, and
K. H. L.
Zhang
,
Adv. Mater.
33
(
50
),
e2006230
(
2021
).
9.
J. E. N.
Swallow
,
B. A. D.
Williamson
,
T. J.
Whittles
,
M.
Birkett
,
T. J.
Featherstone
,
N.
Peng
,
A.
Abbott
,
M.
Farnworth
,
K. J.
Cheetham
,
P.
Warren
,
D. O.
Scanlon
,
V. R.
Dhanak
, and
T. D.
Veal
,
Adv. Funct. Mater.
28
(
4
),
1701900
(
2018
).
10.
V.
Uwihoreye
,
Z.
Yang
,
J.-Y.
Zhang
,
Y.-M.
Lin
,
X.
Liang
,
L.
Yang
, and
K. H. L.
Zhang
,
Sci. China Mater.
66
,
264
(
2022
).
11.
S.
Nakao
,
N.
Yamada
,
T.
Hitosugi
,
Y.
Hirose
,
T.
Shimada
, and
T.
Hasegawa
,
Appl. Phys. Express
3
(
3
),
031102
(
2010
).
12.
R. F.
Martinez-Gazoni
,
M. W.
Allen
, and
R. J.
Reeves
,
Phys. Rev. B
98
(
15
),
155308
(
2018
).
13.
M.
Fukumoto
,
Y.
Hirose
,
B. A. D.
Williamson
,
S.
Nakao
,
K.
Kimura
,
K.
Hayashi
,
Y.
Sugisawa
,
D.
Sekiba
,
D. O.
Scanlon
, and
T.
Hasegawa
,
Adv. Funct. Mater.
32
(
14
),
2110832
(
2021
).
14.
N.
Noor
and
I. P.
Parkin
,
J. Mater. Chem. C
1
(
5
),
984
996
(
2013
).
15.
S. D.
Ponja
,
B. A. D.
Williamson
,
S.
Sathasivam
,
D. O.
Scanlon
,
I. P.
Parkin
, and
C. J.
Carmalt
,
J. Mater. Chem. C
6
(
27
),
7257
7266
(
2018
).
16.
M.-Y.
Tsai
,
O.
Bierwagen
, and
J. S.
Speck
,
Thin Solid Films
605
,
186
192
(
2016
).
17.
J. E. N.
Swallow
,
B. A. D.
Williamson
,
S.
Sathasivam
,
M.
Birkett
,
T. J.
Featherstone
,
P. A. E.
Murgatroyd
,
H. J.
Edwards
,
Z. W.
Lebens-Higgins
,
D. A.
Duncan
,
M.
Farnworth
,
P.
Warren
,
N.
Peng
,
T.-L.
Lee
,
L. F. J.
Piper
,
A.
Regoutz
,
C. J.
Carmalt
,
I. P.
Parkin
,
V. R.
Dhanak
,
D. O.
Scanlon
, and
T. D.
Veal
,
Mater. Horiz.
7
(
1
),
236
243
(
2020
).
18.
B. A. D.
Williamson
,
T. J.
Featherstone
,
S. S.
Sathasivam
,
J. E. N.
Swallow
,
H.
Shiel
,
L. A. H.
Jones
,
M. J.
Smiles
,
A.
Regoutz
,
T. L.
Lee
,
X.
Xia
,
C.
Blackman
,
P. K.
Thakur
,
C. J.
Carmalt
,
I. P.
Parkin
,
T. D.
Veal
, and
D. O.
Scanlon
,
Chem. Mater.
32
(
5
),
1964
1973
(
2020
).
19.
H.
Toyosaki
,
M.
Kawasaki
, and
Y.
Tokura
,
Appl. Phys. Lett.
93
(
13
),
132109
(
2008
).
20.
M.
Fukumoto
,
S.
Nakao
,
K.
Shigematsu
,
D.
Ogawa
,
K.
Morikawa
,
Y.
Hirose
, and
T.
Hasegawa
,
Sci. Rep.
10
,
6844
(
2020
).
21.
D. L.
Wood
and
J.
Tauc
,
Phys. Rev. B
5
(
8
),
3144
3151
(
1972
).
22.
A.
Schleife
,
J. B.
Varley
,
F.
Fuchs
,
C.
Rödl
,
F.
Bechstedt
,
P.
Rinke
,
A.
Janotti
, and
C. G.
Van de Walle
,
Phys. Rev. B
83
(
3
),
035116
(
2011
).
23.
F. P.
Sabino
,
L.
Nunes Oliveira
,
S. H.
Wei
, and
J. L.
Da Silva
,
J. Phys.
29
(
8
),
085501
(
2017
).
24.
X.
Cai
,
F. P.
Sabino
,
A.
Janotti
, and
S.-H.
Wei
,
Phys. Rev. B
103
(
11
),
115205
(
2021
).
25.
I.
Hamberg
,
C. G.
Granqvist
,
K. F.
Berggren
,
B. E.
Sernelius
, and
L.
Engström
,
Phys. Rev. B
30
(
6
),
3240
3249
(
1984
).
26.
A.
Walsh
,
J. L. F.
Da Silva
, and
S.-H.
Wei
,
Phys. Rev. B
78
(
7
),
075211
(
2008
).
27.
J.
Zhang
,
S.
Han
,
M.
Cui
,
X.
Xu
,
W.
Li
,
H.
Xu
,
C.
Jin
,
M.
Gu
,
L.
Chen
, and
K. H. L.
Zhang
,
ACS Appl. Electron. Mater.
2
(
2
),
456
463
(
2020
).
28.
Y.
Gong
,
Z.
Yang
,
L.
Lari
,
I.
Azaceta
,
V. K.
Lazarov
,
J.
Zhang
,
X.
Xu
,
Q.
Cheng
, and
K. H. L.
Zhang
,
ACS Appl. Mater. Interfaces
12
(
47
),
53446
53453
(
2020
).
29.
B.
Bouhafs
,
F.
Litimein
,
Z.
Dridi
, and
P.
Ruterana
,
Phys. Status Solidi B
236
(
1
),
61
81
(
2003
).
30.
B.
Monemar
,
Phys. Rev. B
10
(
2
),
676
681
(
1974
).
31.
H.
Okumura
,
S.
Yoshida
, and
T.
Okahisa
,
Appl. Phys. Lett.
64
(
22
),
2997
2999
(
1994
).
32.
S. K.
Vasheghani Farahani
,
T. D.
Veal
,
J. J.
Mudd
,
D. O.
Scanlon
,
G. W.
Watson
,
O.
Bierwagen
,
M. E.
White
,
J. S.
Speck
, and
C. F.
McConville
,
Phys. Rev. B
90
(
15
),
155413
(
2014
).
33.
X. Z.
Liu
,
P.
Guo
,
T.
Sheng
,
L. X.
Qian
,
W. L.
Zhang
, and
Y. R.
Li
,
Opt. Mater.
51
,
203
207
(
2016
).
34.
E. A.
Kraut
,
R. W.
Grant
,
J. R.
Waldrop
, and
S. P.
Kowalczyk
,
Phys. Rev. B
28
(
4
),
1965
1977
(
1983
).
35.
E. A.
Kraut
,
R. W.
Grant
,
J. R.
Waldrop
, and
S. P.
Kowalczyk
,
Phys. Rev. Lett.
44
(
24
),
1620
1623
(
1980
).
36.
A. S.
Barker
, Jr.
and
M.
Ilegems
,
Phys. Rev. B
7
(
2
),
743
750
(
1973
).
37.
K.
Karch
,
J.-M.
Wagner
, and
F.
Bechstedt
,
Phys. Rev. B
57
(
12
),
7043
(
1998
).
38.
M.
Grundmann
,
The Physics of Semiconductors: An Introduction Including Nanophysics and Applications
(
Springer
,
2010
).
You do not currently have access to this content.